7.已知A(1,-2),B(m,2),直線$y=-\frac{1}{2}x+1$垂直于直線AB,則實(shí)數(shù)m的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.3D.1

分析 利用兩直線垂直斜率之積等于-1,解方程求得實(shí)數(shù)a的值.

解答 解:∵直線$y=-\frac{1}{2}x+1$垂直于直線AB,
∴$\frac{2+2}{m-1}×(-\frac{1}{2})$=-1,解得m=3,
故選C.

點(diǎn)評(píng) 本題主要考查兩直線垂直的性質(zhì),兩直線垂直斜率之積等于-1,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.把正偶數(shù)數(shù)列{2n}的各項(xiàng)從小到大依次排成如圖的三角形數(shù)陣,記M(r,t)表示該數(shù)陣中第r行的第t個(gè)數(shù),則數(shù)陣中的數(shù)2 012對(duì)應(yīng)于第45行的第16個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.觀察:13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,…可得一般規(guī)律為13+23+33+…+n3=(1+2+3+…+n)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.計(jì)算機(jī)執(zhí)行如圖的程序,輸出的結(jié)果是( 。
A.3,4B.7,3C.3,21D.21,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.a(chǎn),b,c是△ABC中角A,B,C的對(duì)邊,則直線sinAx+ay+c=0與sinBx+by=0的位置關(guān)系是( 。
A.相交B.重合C.垂直D.平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t是參數(shù)),圓C的極坐標(biāo)方程為ρ=4cos(θ+$\frac{π}{4}$).
(Ⅰ)求圓心C的直角坐標(biāo);
(Ⅱ)由直線l上的點(diǎn)向圓C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某科室派出4名調(diào)研員到3個(gè)學(xué)校,調(diào)研該校高三復(fù)習(xí)備考近況,要求每個(gè)學(xué)校至少一名,則不同的分配方案種數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,過動(dòng)點(diǎn)P分別作圓C1:x2+y2+2x+2y+1=0和圓C2:x2+y2-4x-6y+9=0的切線PA,PB(A,B為切點(diǎn)),若|PA|=|PB|,則|OP|的最小值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如果框圖所給的程序運(yùn)行結(jié)果為S=35,那么判斷框中整數(shù)m的值為6.

查看答案和解析>>

同步練習(xí)冊(cè)答案