5.函數(shù)f(x)=ln|x-1|+2cosπx(-2≤x≤4)的所有零點之和等于( 。
A.2B.4C.6D.8

分析 函數(shù)f(x)=ln|x-1|+2cosπx的零點,即為函數(shù)f(x)=2cosπx與函數(shù)g(x)=ln|x-1|的圖象交點的橫坐標(biāo),由圖象變化的法則和余弦函數(shù)的特點作出函數(shù)的圖象,由對稱性可得答案.

解答 解:f(x)=ln|x-1|+2cosπx的零點,
即為函數(shù)f(x)=-2cosπx與函數(shù)g(x)=ln|x-1|的圖象交點的橫坐標(biāo),
由圖象變化的法則可知:y=ln|x-1|的圖象作關(guān)于y軸的對稱后和原來的一起構(gòu)成y=ln|x|的圖象,
在向右平移1個單位得到y(tǒng)=ln|x-1|的圖象
又f(x)=-2cosπx的周期為2,如圖所示:
兩圖象都關(guān)于直線x=1對稱,且共有A,B,C,D,E,F(xiàn),6個交點,
由中點坐標(biāo)公式可得:xA+xF=2,xB+xE=2,xC+xD=2,
故所有交點的橫坐標(biāo)之和為6,
故選:C.

點評 本題考查函數(shù)圖象的作法,熟練作出函數(shù)的圖象是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow a=({m,1}),\overrightarrow b=({1,n-2}),({m>0,n>0})$若$\overrightarrow a⊥\overrightarrow b$,則$\frac{1}{m}+\frac{2}{n}$的最小值為( 。
A.2$\sqrt{2}$B.$\frac{3}{2}$+$\sqrt{2}$C.3$\sqrt{2}$+2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某籃球隊甲、乙兩名運動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個,命中個數(shù)的莖葉圖如圖所示,則下列結(jié)論錯誤 的一個是(  )
A.甲的極差是29B.甲的中位數(shù)是25
C.乙的眾數(shù)是21D.甲的平均數(shù)比乙的大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)$f(x)=cos(2x+\frac{π}{3})+1$,如下結(jié)論中正確的是②③⑤.(寫出所有正確結(jié)論的編號):
①點$(-\frac{5}{12}π,0)$是函數(shù)f(x)圖象的一個對稱中心;
②直線x=$\frac{π}{3}$是函數(shù)f(x)圖象的一條對稱軸; 
③函數(shù)f(x)的最小正周期是π;
④函數(shù)f(x)在$[-\frac{π}{6},\frac{π}{3}]$上為增函數(shù);
⑤將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位后,對應(yīng)的函數(shù)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲、乙兩個人投籃,他們投進(jìn)籃的概率分別為$\frac{2}{5},\frac{1}{2}$,現(xiàn)甲、乙兩人各投籃1次,則兩個人都投進(jìn)的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{9}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校從參加高二年級數(shù)學(xué)競賽考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù),滿分100分)分成六段,然后畫出如圖所示部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率以及頻率分布直方圖中第四小矩形的高;
(2)估計這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從分?jǐn)?shù)段的學(xué)生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識競賽,求這兩個學(xué)生都來自C組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中正確的是( 。
A.若p:?x∈R,ex>xe,q:?x0∈R,|x0|≤0,則(¬p)∧q為假
B.x=1是x2-x=0的必要不充分條件
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BEF,D、E在AB上,F(xiàn)在BC上.在△ACB中任取一點,這一點恰好在圖中陰影部分的概率是( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的極坐標(biāo)方程為$\sqrt{3}ρcosθ+ρsinθ-1=0$,曲線C的極坐標(biāo)方程為ρ=4.
(1)將曲線C的極坐標(biāo)方程化為普通方程;
(2)若直線l與曲線交于A,B兩點,求線段AB 的長.

查看答案和解析>>

同步練習(xí)冊答案