設(shè)f(x)是定義在R上的增函數(shù),令g(x)=f(x)-f(2010-x)
(1)求證g(x)+g(2010-x)時定值;
(2)判斷g(x)在R上的單調(diào)性,并證明;
(3)若g(x1)+g(x2)>0,求證x1+x2>2010.
【答案】分析:(1)利用條件化簡g(x)+g(2010-x)=f(x)-f(2010-x)+f(2010-x)-f(x)=0,顯然為定值.
(2)f(x)在R上的增函數(shù),設(shè)x1<x2,化簡(x1)-g(x2)為[f(x1)-f(x2)]+[f(2010-x2)-f(2010-x1)],小于0,從而得到g(x)在R上的增函數(shù).
(3)用反證法證明,假設(shè)x1+x2≤2010,利用g(x)在R上的增函數(shù)推出g(x1)+g(x2)≤0,這與已知g(x1)+g(x2)>0矛盾,從而應(yīng)有x1+x2>2010.
解答:解:(1)∵g(x)=f(x)-f(2010-x),
∴g(x)+g(2010-x)=f(x)-f(2010-x)+f(2010-x)-f(x)=0為定值.
(2)g(x)在R上的增函數(shù),設(shè)x1<x2,則2010-x1>2010-x2,
∵f(x)是R上的增函數(shù)∴f(x1)<f(x2),f(2010-x1)>f(2010-x2)
故g(x1)-g(x2)=f(x1)-f(2010-x1)-f(x2)+f(2010-x2)=[f(x1)-f(x2)]+[f(2010-x2)-f(2010-x1)]<0,
即g(x1)<g(x2),∴g(x)在R上的增函數(shù).
(3)假設(shè)x1+x2≤2010,則x1≤2010-x2 ,故g(x1)≤g(2010-x2),
又g(2010-x2)=-g(x2),
∴g(x1)+g(x2)≤0,這與已知g(x1)+g(x2)>0矛盾,
∴x1+x2>2010.
點評:本題主要考查函數(shù)的單調(diào)性的判斷和證明,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.