分析 (1)利用正弦定理即可得出;
(2)利用余弦定理與基本不等式的性質(zhì)、三角形的面積計算公式即可得出.
解答 解:(1)由條件$\sqrt{3}a=2csinA$得,$sinC=\frac{{\sqrt{3}}}{2},又△ABC為銳角三角形,所以C=6{0°}$
(2)由余弦定理c2=a2+b2-2abcosC得,3=a2+b2-ab≥2ab-ab=ab,
所以${S_{△ABC}}=\frac{1}{2}absinC≤\frac{1}{2}×3×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{4}$.
點評 本題考查了正弦定理余弦定理、基本不等式的性質(zhì)、三角形的面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}\vec a-\frac{2}{3}\vec b+\frac{1}{2}\vec c$ | B. | $-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$ | C. | $\frac{1}{2}\vec a+\frac{1}{2}\vec b-\frac{1}{2}\vec c$ | D. | $\frac{2}{3}\vec a+\frac{2}{3}\vec b-\frac{1}{2}\vec c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第一次 | 第二次 | 第三次 | |
甲 | 0.4 | 0.6 | 0.8 |
乙 | 0.5 | 0.6 | 0.9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com