18.設(shè)a=$\sqrt{7}$+$\sqrt{10}$,b=$\sqrt{3}$+$\sqrt{14}$,則a與b的大小關(guān)系是a>b.

分析 平方作差即可得出.

解答 解:∵a2-b2=17+2$\sqrt{70}$-$(17+2\sqrt{42})$=$2(\sqrt{70}-\sqrt{42})$>0,a,b>0,
∴a>b.
故答案為:a>b.

點(diǎn)評(píng) 本題考查了平方作差比較兩個(gè)數(shù)的大小方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓上的點(diǎn).若PF1⊥F1F2,∠F1PF2=60°,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow$=(x2,y2,z2),$\overrightarrow{a}$≠$\overrightarrow$,設(shè)|$\overrightarrow{a}-\overrightarrow$|=k,則|$\overrightarrow{a}-\overrightarrow$與單位向量$\overrightarrow{i}$=(1,0,0)夾角的余弦值為(  )
A.$\frac{{x}_{1}-{x}_{2}}{k}$B.$\frac{{x}_{2}-{x}_{1}}{k}$C.$\frac{|{x}_{1}-{x}_{2}|}{k}$D.±$\frac{{x}_{1}-{x}_{2}}{k}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.利用定積分的定義計(jì)算∫${\;}_{1}^{2}$(1+x)dx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.不等式|x+5|>x+5的解集為( 。
A.(0,+∞)B.(-∞,0)C.(-∞,-5)D.(-∞,-5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.集合U={1,2,3,4,5,6},A={1,3,5},B={2,4,5},則A∩∁UB=(  )
A.{1,3,6}B.{1,3}C.{1}D.{2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.
(Ⅰ)求A∪∁UB;
(Ⅱ)若A∩C=C,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓N經(jīng)過(guò)點(diǎn)A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關(guān)于直線x-y+3=0對(duì)稱的圓的方程.
(Ⅲ)若點(diǎn)D為圓N上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(x)=ax3+3x2-1存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍是(-∞,-2).

查看答案和解析>>

同步練習(xí)冊(cè)答案