【題目】在平面直角坐標系中,動點到定點的距離和它到直線的距離

之比是常數(shù),記動點的軌跡為.

(1)求軌跡的方程;

(2)過點且不與軸重合的直線,與軌跡交于,兩點,線段的垂直平分線與軸交于點,與軌跡是否存在點,使得四邊形為菱形?若存在,請求出直線的方程;若不存在,請說明理由.

【答案】(1);(2).

【解析】

試題分析:(1)直接根據(jù)題設條件列出等式,再進行化簡,即可得到動點的軌跡的方程;(2)先假設存在,并設出直線的方程,聯(lián)立直線與橢圓,結合韋達定理得到中點的坐標,進而表示出點的坐標,再根據(jù)點在橢圓上,可求出直線的方程.

試題解析:1)設動點,

動點到定點的距離和它到直線的距離之比是常數(shù)

由題意,得

化簡整理得的方程為.

軌跡的方程為. ...(3分)

(2)假設存在滿足條件.依題意設直線,

聯(lián)立,消去,得,

,,

,,...(7分)

的中點的坐標為.

,直線的方程為

,解得,即. ...(9分)

、關于點對稱,,

解得,,即. ...(11分)

在橢圓上,,

解得,,

的方程為. ...(13分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為考察某種藥物預防禽流感的效果,進行動物家禽試驗,調(diào)查了100個樣本,統(tǒng)計結果為:服用藥的共有60個樣本,服用藥但患病的仍有20個樣本,沒有服用藥且未患病的有20個樣本.

(1)根據(jù)所給樣本數(shù)據(jù)完成下面2×2列聯(lián)表;

(2)請問能有多大把握認為藥物有效?

不得禽流感

得禽流感

總計

服藥

不服藥

總計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)若不經(jīng)過坐標原點的直線與圓相切,且直線在兩坐標軸上的截距相等,求直線的方程;

2)設點在圓上,求點到直線距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】性格色彩學創(chuàng)始人樂嘉是江蘇電視臺當紅節(jié)目“非誠勿擾”的特約嘉賓,他的點評視角獨特,語言犀利,給觀眾留下了深刻的印象,某報社為了了解觀眾對樂嘉的喜愛程度,隨機調(diào)查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)

總計

喜愛

40

60

100

不喜愛

20

20

40

總計

60

80

140

p(k2≥k0

0.10

0.05

0.025

0.010

0.005

k0

2.705

3.841

5.024

6.635

7.879

(Ⅰ)從這60名男觀眾中按對樂嘉是否喜愛采取分層抽樣,抽取一個容量為6的樣本,問樣本中喜愛與不喜愛的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.025的前提下認為觀眾性別與喜愛樂嘉有關?(精確到0.001)

(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛樂嘉的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若當時,函數(shù)的圖象恒在直線上方,求實數(shù)的取值范圍;

(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在非零實數(shù)集上的函數(shù)滿足: ,且在區(qū)間上為遞增函數(shù).

1)求、的值;

2)求證: 是偶函數(shù);

3)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),記的導函數(shù).

(1)若曲線在點處的切線垂直于直線,求的值;

(2)討論的解的個數(shù);

(3)證明:對任意的,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,其中, 為自然對數(shù)的底數(shù).

(Ⅰ)若在區(qū)間內(nèi)具有相同的單調(diào)性,求實數(shù)的取值范圍;

(Ⅱ)若,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)解析式:

(1)已知是一次函數(shù),且滿足3,求;

(2)已知,求的解析式.

查看答案和解析>>

同步練習冊答案