分析 先求出x>0時(shí)的解析式,由偶函數(shù)性質(zhì)得:f(-x)=f(x),則f(x+2)<3可變?yōu)閒(|x+2|)<3,代入已知表達(dá)式可表示出不等式,先解出|x+2|的范圍,再求x范圍即可.
解答 解:設(shè)x>0,則-x<0,
因?yàn)楫?dāng)x≤0時(shí),f(x)=x2+2x,
所以f(-x)=x2-2x,
因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=x2-2x,
因?yàn)閒(x)為偶函數(shù),所以f(|x+2|)=f(x+2),
則f(x+2)<3可化為f(|x+2|)<3,即|x+2|2-2|x+2|<3,(|x+2|+1)(|x+2|-3)<0,
所以|x+2|<3,解得-5<x<1,
所以不等式f(x+2)<3的解集是{x|-5<x<1}.
故答案為:{x|-5<x<1}.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、一元二次不等式的解法,借助偶函數(shù)性質(zhì)把不等式具體化是解決本題的關(guān)鍵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com