【題目】已知函數(shù)f(x)=xlnx,g(x)= +x﹣a(a∈R). (Ⅰ)若直線x=m(m>0)與曲線y=f(x)和y=g(x)分別交于M,N兩點(diǎn).設(shè)曲線y=f(x)在點(diǎn)M處的切線為l1 , y=g(x)在點(diǎn)N處的切線為l2 .
(。┊(dāng)m=e時(shí),若l1⊥l2 , 求a的值;
(ⅱ)若l1∥l2 , 求a的最大值;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)﹣g(x)在其定義域內(nèi)恰有兩個(gè)不同的極值點(diǎn)x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范圍.
【答案】解:(Ⅰ)(i)∵函數(shù)f(x)=xlnx,∴f(x)的定義域?yàn)閧x|x>0},f′(x)=1+lnx, ∵g(x)= +x﹣a(a∈R),∴g′(x)=ax+1,
當(dāng)m=e時(shí),f′(e)=1+lne=2,g′(e)=ae+1,
∵l1⊥l2 , ∴f′(e)g′(e)=2(ae+1)=﹣1,
解得a=﹣ .
(ii)∵函數(shù)f(x)=xlnx,∴f(x)的定義域?yàn)閧x|x>0},f′(x)=1+lnx,
∵g(x)= +x﹣a(a∈R),∴g′(x)=ax+1,
∴f′(m)=1+lnm,g′(m)=am+1,
∵l1∥l2 , ∴f′(m)=g′(m)在(0,+∞)上有解,
∴l(xiāng)nm=am在(0,+∞)上有解,
∵m>0,∴a= ,
令F(x)= (x>0),則 =0,解得x=e,
當(dāng)x∈(0,e)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)為增函數(shù),
當(dāng)x∈(e,+∞)時(shí),F(xiàn)′(x)<0,F(xiàn)(x)為減函數(shù),
∴F(x)max=F(e)= ,
∴a的最大值為 .
(Ⅱ)h(x)=xlnx﹣ ﹣x+a,(x>0),h′(x)=lnx﹣ax,
∵x1 , x2為h(x)在其定義域內(nèi)的兩個(gè)不同的極值點(diǎn),
∴x1 , x2是方程lnx﹣ax=0的兩個(gè)根,即lnx1=ax1 , lnx2=ax2 ,
兩式作差,并整理,得:a= ,
∵λ>0,0<x1<x2 ,
由λlnx2﹣λ>1﹣lnx1 , 得1+λ<lnx1+λlnx2 ,
則1+λ<a(x1+λx2),∴a> ,∴ > ,
∴l(xiāng)n < ,
令t= ,則t∈(0,1),由題意知:
lnt< 在t∈(0,1)上恒成立,
令φ(t)=lnt﹣ ,則φ′(t)= = ,
①當(dāng)λ2≥1時(shí),即λ≥1時(shí),t∈(0,1),φ′(t)>0,
∴φ(t)在(0,1)上單調(diào)遞增,
又φ(1)=0,則φ(t)<0在(0,1)上恒成立.
②當(dāng)λ2<1,即0<λ<1時(shí),t∈(0,λ2)時(shí),φ′(t)>0,φ(t)在(0,λ2)上是增函數(shù);
當(dāng)t∈(λ2 , 1)時(shí),φ′(t)<0,φ(t)在(λ2 , 1)上是減函數(shù).
又φ(1)=0,∴φ(t)不恒小于0,不合題意.
綜上,λ的取值范圍是[1,+∞).
【解析】(Ⅰ)(i)f(x)的定義域?yàn)閧x|x>0},f′(x)=1+lnx,g′(x)=ax+1,當(dāng)m=e時(shí),f′(e)=1+lne=2,g′(e)=ae+1,由l1⊥l2 , 利用導(dǎo)數(shù)的幾何意義得f′(e)g′(e)=2(ae+1)=﹣1,由此能求出a. (ii)f′(m)=1+lnm,g′(m)=am+1,由l1∥l2 , 得lnm=am在(0,+∞)上有解,從而a= ,令F(x)= (x>0),由 =0,得x=e,利用導(dǎo)數(shù)性質(zhì)求出F(x)max=F(e)= ,由此能求出a的最大值.(Ⅱ)h(x)=xlnx﹣ ﹣x+a,(x>0),h′(x)=lnx﹣ax,從而x1 , x2是方程lnx﹣ax=0的兩個(gè)根,進(jìn)而a= ,推導(dǎo)出 > ,從而ln < ,令t= ,則t∈(0,1),從而lnt< 在t∈(0,1)上恒成立,令φ(t)=lnt﹣ ,則φ′(t)= = ,由此根據(jù)λ2≥1和λ2<1分類(lèi)討論,利用導(dǎo)數(shù)性質(zhì)能求出λ的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f(x)<f'(x),則不等式 f(2)的解集是( )
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P為曲線C1上動(dòng)點(diǎn),Q為曲線C2上動(dòng)點(diǎn),則稱(chēng)|PQ|的最小值為曲線C1 , C2之間的距離,記作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,則d(C1 , C2)=;若C3:ex﹣2y=0,C4:lnx+ln2=y,則d(C3 , C4)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有兩個(gè)命題,p:關(guān)于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函數(shù)y=lg(ax2﹣x+a)的定義域?yàn)镽.如果p∨q為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.直線l的參數(shù)方程是 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρ= sin( ).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于M、N兩點(diǎn),求M、N兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)證明:CP⊥BD;
(2)若AP=PC=2 ,求二面角A﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com