橢圓
x2
5
+
y2
4
=1
的焦距是(  )
分析:利用橢圓的標(biāo)準(zhǔn)方程,求出c,由此能求出橢圓的焦距.
解答:解:橢圓
x2
5
+
y2
4
=1
中,
∵c=
5-4
=1,
∴焦距|F1F2|=2c=2.
故選B.
點(diǎn)評(píng):本題考查橢圓的焦距的求法,是基礎(chǔ)題,解題時(shí)要熟練掌握橢圓的簡(jiǎn)單性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
5
+
y2
4
=1
的右焦點(diǎn)作一條斜率為2的直線與橢圓交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的面積為( 。
A、2
B、
2
3
C、1
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
5
+
y2
4
=1
的右焦點(diǎn)作一條斜率為2的直線與橢圓交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)過(guò)橢圓
x2
5
+
y2
4
=1的左焦點(diǎn)F作橢圓的弦AB.如圖
(1)求此橢圓的左焦點(diǎn)F的坐標(biāo)和橢圓的準(zhǔn)線方程(x=±
a2
c
);
(2)求弦AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線mx+ny=4和圓:x2+y2=4沒有公共點(diǎn),則過(guò)點(diǎn)(m,n)直線與橢圓
x2
5
+
y2
4
=1
的交點(diǎn)的個(gè)數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
5
+
y2
4
=1的右焦點(diǎn)作一條斜率為2的直線與橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的面積為
5
3
5
3

查看答案和解析>>

同步練習(xí)冊(cè)答案