【題目】已知函數(shù),其中常數(shù).

(1)當(dāng)時,的最小值;

(2)討論函數(shù)的奇偶性,并說明理由;

(3)當(dāng)時,是否存在實(shí)數(shù),使得不等式對任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

【答案】(1)2(2)見解析(3)存在,

【解析】

(1)直接利用不等式的基本性質(zhì)求最值;

(2)利用求得值,從而得到函數(shù)為奇函數(shù)或偶函數(shù)的的取值;

(3)由原函數(shù)可得當(dāng)時,函數(shù)在上是減函數(shù),利用單調(diào)性直接轉(zhuǎn)化為恒成立,分離參數(shù)求解即可得到值.

(1)當(dāng)時,,

當(dāng)且僅當(dāng),即時取等號;

(2)的定義域?yàn)?/span>,,

,

,得,即,

,即;

,得,即,

,即.

∴當(dāng)時,函數(shù)為偶函數(shù);當(dāng)時,函數(shù)為奇函數(shù);

當(dāng)時,為非奇非偶函數(shù);

(3)當(dāng)時,,.

當(dāng)時,,

由復(fù)合函數(shù)的單調(diào)性知,上是減函數(shù),

要使,只要,

設(shè),則函數(shù)上的最大值為2.

要使①式恒成立,必須,即.

∴在區(qū)間上存在,使得原不等式對任意的恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時,該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個函數(shù)模擬從整治后第一個月開始工廠的污染模式:,,其中表示月數(shù),、、分別表示污染度.

1)問選用哪個函數(shù)模擬比較合理,并說明理由;

2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個月的污染度不超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列各項(xiàng)均不為0,前n項(xiàng)和為,,的前n項(xiàng)和為,且

1)若數(shù)列3項(xiàng),求所有滿足要求的數(shù)列;

2)求證:是滿足已知條件的一個數(shù)列;

3)請構(gòu)造出一個滿足已知條件的無窮數(shù)列,并使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A是以BC為直徑的圓O上異于B,C的動點(diǎn),P為平面ABC外一點(diǎn),且平面PBC⊥平面ABCBC=3,PB=2,PC,則三棱錐PABC外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn),它的一個焦點(diǎn)與拋物線的焦點(diǎn)重合.

1)求橢圓的方程;

2)斜率為的直線過點(diǎn),且與拋物線交于兩點(diǎn),設(shè)點(diǎn)的面積為,求的值;

3)若直線過點(diǎn),且與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線的縱截距為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是(

A.有兩個面相互平行,其余各面都是平行四邊形的多面體是棱柱

B.正四面體是四棱錐

C.有一個面是多邊形,其余各面都是三角形的多面體叫做棱錐

D.正四棱柱是平行六面體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強(qiáng)總理在很多重大場合都提出大眾創(chuàng)業(yè),萬眾創(chuàng)新.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬元做創(chuàng)業(yè)資金,每月獲得的利潤是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤)的,每月的生活費(fèi)等開支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營.如此每月循環(huán)繼續(xù).

1)問到2015年年底(按照12個月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)

2)如果銀行貸款的年利率為,問該創(chuàng)客一年(12個月)能否還清銀行貸款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照如下規(guī)則構(gòu)造數(shù)表:第一行是:2;第二行是:;即3,5,第三行是:4,66,8;(即從第二行起將上一行的數(shù)的每一項(xiàng)各項(xiàng)加1寫出,再各項(xiàng)加3寫出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的項(xiàng)的和為

1)求

2)試求的遞推關(guān)系,并據(jù)此求出數(shù)列的通項(xiàng)公式;

3)設(shè),求的值.

查看答案和解析>>

同步練習(xí)冊答案