【題目】按照如下規(guī)則構(gòu)造數(shù)表:第一行是:2;第二行是:;即3,5,第三行是:4,6,6,8(即從第二行起將上一行的數(shù)的每一項各項加1寫出,再各項加3寫出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的項的和為

1)求

2)試求的遞推關(guān)系,并據(jù)此求出數(shù)列的通項公式;

3)設(shè),求的值.

【答案】1 2, 3,

【解析】

1)根據(jù)已給數(shù)據(jù)可計算,寫出第5行后可計算;

2)根據(jù)數(shù)表的形成過程,可得遞推關(guān)系:,化簡后,構(gòu)造新數(shù)列是等差數(shù)列,通項公式可求;

3)計算,并裂項得,即用裂項相消法求得和,然后可求得極限.

1)第5行數(shù)據(jù)是68,810,8,10,1012,810,1012,1012,12,14

2)由題意,第行共有項,

于是有

等式兩邊同除,得,

為等差數(shù)列,公差為,首項為

所以,即

3)因為

所以

所以,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當時,的最小值;

(2)討論函數(shù)的奇偶性,并說明理由;

(3)當時,是否存在實數(shù),使得不等式對任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.是異面直線,、是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直線與拋物線)交于、兩點,為坐標原點,.

1)求直線的方程和拋物線的方程;

2)若拋物線上一動點運動時(不與、重合),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,對一切,點都在函數(shù)的圖象上.

1)求,歸納數(shù)列的通項公式(不必證明).

2)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為,,,;,,,;,,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值.

3)設(shè)為數(shù)列的前項積,且,求數(shù)列的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照如下規(guī)則構(gòu)造數(shù)表:第一行是:2;第二行是:;即3,5,第三行是:4,6,68;(即從第二行起將上一行的數(shù)的每一項各項加1寫出,再各項加3寫出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的項的和為

1)求;

2)試求的遞推關(guān)系,并據(jù)此求出數(shù)列的通項公式;

3)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Eab0)的離心率e.

1)若點P1,)在橢圓E上,求橢圓E的標準方程;

2)若D20)在橢圓內(nèi)部,過點D斜率為的直線交橢圓EM.N兩點,|MD|2|ND|,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程;

(2)射線與曲線分別交于兩點(異于原點),定點,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,令,其導函數(shù)為,設(shè)是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.

查看答案和解析>>

同步練習冊答案