函數(shù)y=log2x+logx2x的值域為(  )
A、(-∞,-1]B、[3,+∞)C、[-1,3]D、(-∞,-1]∪[3,+∞)
分析:注意到log2x和logx2互為倒數(shù),積是定值,所以只要將原函數(shù)化為用logx2和log2x表示,再用基本不等式求最值即可.
解答:解:y=log2x+logx2x=(log2x+logx2)+1,
設log2x=t,則logx2=
1
t
,y=t+
1
t
+1(t∈R),因此y≥3或y≤-1
故選D.
點評:本題考查利用基本不等式求最值和對數(shù)的有關運算,在求和的最小值時,湊出積是定值形式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log2
x-1
x
(x>1)的反函數(shù)是(  )
A、y=
1
1-2x
(x>0)
B、y=
1
1-2x
(x<0)
C、y=
1
1+2x
(x>0)
D、y=
1
1+2x
(x<0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x=2及x=4與函數(shù)y=log2x圖象的交點分別為A,B,與函數(shù)y=lgx圖象的交點分別為C,D,則直線AB與CD( 。
A、相交,且交點在第I象限B、相交,且交點在第II象限C、相交,且交點在第IV象限D、相交,且交點在坐標原點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log2x,x∈(0,8],其值域為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log2x+logx2+1的值域是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)二模)為了得到函數(shù)y=
1
2
log2(x-1)
的圖象,可將函數(shù)y=log2x的圖象上所有的點的(  )

查看答案和解析>>

同步練習冊答案