分析 由定積分求出n=6,從而Tr+1=(-5)6-r${C}_{6}^{r}$${x}^{\frac{3}{2}r-6}$,令$\frac{3}{2}r-6=\frac{3}{2}$,解得r=5,由此能求出${(\sqrt{x}-\frac{5}{x})^n}$的展開(kāi)式中含${x^{\frac{3}{2}}}$的項(xiàng)的系數(shù).
解答 解:∵$n=\int\begin{array}{l}{e^6}\\ 1\end{array}\frac{1}{x}dx$=(lnx)${|}_{1}^{{e}^{6}}$=lne6-ln1=6,
∴${(\sqrt{x}-\frac{5}{x})^n}$=${(\sqrt{x}-\frac{5}{x})^6}$,
Tr+1=${C}_{6}^{r}(\sqrt{x})^{r}(-\frac{5}{x})^{6-r}$=(-5)6-r${C}_{6}^{r}$${x}^{\frac{3}{2}r-6}$,
令$\frac{3}{2}r-6=\frac{3}{2}$,解得r=5,
∴${(\sqrt{x}-\frac{5}{x})^n}$的展開(kāi)式中含${x^{\frac{3}{2}}}$的項(xiàng)的系數(shù)為:${(-5)^{1}C}_{6}^{5}$=-30.
故答案為:-30.
點(diǎn)評(píng) 本題考查展開(kāi)式中含${x^{\frac{3}{2}}}$的項(xiàng)的系數(shù)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意定積分、函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 91 | B. | 89 | C. | 55 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
人文科學(xué)類(lèi) | 自然科學(xué)類(lèi) | 藝術(shù)體育類(lèi) | |
課程門(mén)數(shù) | 4 | 4 | 2 |
每門(mén)課程學(xué)分 | 2 | 3 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 當(dāng)t=2時(shí),m的最小值為3 | B. | 當(dāng)t=3時(shí),m一定為3 | ||
C. | 當(dāng)t=4時(shí),m的最大值為3 | D. | ?t∈R,m一定為3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com