Processing math: 13%
12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足c3sinB+cosB=a+b
(Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面積為53,求sinB的值.

分析 (Ⅰ)由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式可得sinB3sinCcosC1=0,結(jié)合sinB≠0,可得:sinCπ6=12,進(jìn)而可求C的值.
(Ⅱ)由已知利用三角形面積公式可求b,由余弦定理得c,進(jìn)而利用正弦定理可求sinB的值.

解答 (本小題滿分12分)
解:(Ⅰ)由正弦定理,c(\sqrt{3}sinB+cosB)=a+b,
可整理變形為:sinC(\sqrt{3}sinB+cosB)=sinA+sinB,----------------------(2分)
由A=π-(B+C),可得:sinA=sin(B+C)
所以:sinC(\sqrt{3}sinB+cosB)=sin(B+C)+sinB,
整理得:sinB(\sqrt{3}sinC-cosC-1)=0,----------------------(4分)
因?yàn)閟inB≠0,
所以\sqrt{3}sinC-cosC=1,可得:sin(C-\frac{π}{6})=\frac{1}{2}
C-\frac{π}{6}=\frac{π}{6},
C=\frac{π}{3}.----------------------(6分)
(Ⅱ)由已知a=5,{S_{△ABC}}=5\sqrt{3},得\frac{1}{2}×5b×\frac{{\sqrt{3}}}{2}=5\sqrt{3}⇒b=4,------(8分)
由余弦定理得c2=a2+b2-2abcosC=21,故c=\sqrt{21},…(10分)
可得:sinB=\frac{bsinC}{c}=\frac{4}{{\sqrt{21}}}•\frac{{\sqrt{3}}}{2}•\frac{{\sqrt{3}}}{2}=\frac{{2\sqrt{7}}}{7}.…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知{∫}_{0}^{1}(x+m)dx=1,則函數(shù)f(x)=logm(3+2x-x2)的單調(diào)遞減區(qū)間是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)全集U={-1,2,4},集合A={-1,4},則∁UA={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=m(sinx+cosx)-4sinxcosx,x∈[0,\frac{π}{2}],m∈R.
(1)設(shè)t=sinx+cosx,x∈[0,\frac{π}{2}],將f(x)表示為關(guān)于t的函數(shù)關(guān)系式g(t),并求出t的取值范圍;
(2)若關(guān)于x的不等式f(x)≥0對(duì)所有的x∈[0,\frac{π}{2}]恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程f(x)-2m+4=0在[0,\frac{π}{2}]上有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線{x^2}-\frac{y^2}{m}=1與拋物線y2=8x的準(zhǔn)線交于點(diǎn)P,Q,拋物線的焦點(diǎn)為F,若△PQF是等邊三角形,則雙曲線的離心率為( �。�
A.\frac{4}{3}B.\frac{5}{3}C.\frac{25}{9}D.\frac{16}{9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足(1+i)z=2i,則z的虛部是( �。�
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知n=\int\begin{array}{l}{e^6}\\ 1\end{array}\frac{1}{x}dx,那么{(\sqrt{x}-\frac{5}{x})^n}的展開(kāi)式中含{x^{\frac{3}{2}}}的項(xiàng)的系數(shù)為-30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1,等腰梯形BCDP中,BC∥PD,BA⊥PD于點(diǎn)A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如圖2),使∠P'AD=90°.
(Ⅰ)求證:CD⊥平面P'AC;
(Ⅱ)求二面角A-P'D-C的余弦值;
(Ⅲ)線段P'A上是否存在點(diǎn)M,使得BM∥平面P'CD.若存在,指出點(diǎn)M的位置并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={0,1,2,3},B=\{x∈N\left|{y=\sqrt{x-1}}\right.\},則A∩B=(  )
A.{0,1,2}B.{1,2,3}C.{x|x≥1}D.{x|x>1}

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�