【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)程為(為參數(shù)),設(shè)直線與的交點(diǎn)為,當(dāng)變化時(shí)點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.
【答案】(1)的普通方程為;(2) 的最小值為.
【解析】【試題分析】(1)利用加減消元法,消去參數(shù),可將轉(zhuǎn)化為普通方程.將兩方程聯(lián)立,消去可得的普通方程.(2)先將直線的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,寫出的參數(shù)方程,利用點(diǎn)到直線的距離公式和三角函數(shù)輔助角公式,可求得距離的最小值.
【試題解析】
(1)將, 的參數(shù)方程轉(zhuǎn)化為普通方程
,①
,②
①×②消可得: ,
因?yàn)?/span>,所以,所以的普通方程為.
(2)直線的直角坐標(biāo)方程為: .
由(1)知曲線與直線無公共點(diǎn),
由于的參數(shù)方程為(為參數(shù), , ),
所以曲線上的點(diǎn)到直線的距離為
,
所以當(dāng)時(shí), 的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點(diǎn),圖象與P點(diǎn)最近的一個(gè)最高點(diǎn)坐標(biāo)為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,求函數(shù)的值域;
(3)若方程在上有兩個(gè)不相等的實(shí)數(shù)根,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)過點(diǎn)(3,-),離心率e=;
(2)中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,實(shí)軸長和虛軸長相等,且過點(diǎn)P(4,-).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)求證: ,其中為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,頂點(diǎn)在底面上的射影恰為點(diǎn),且
(1)證明:平面平面;
(2)求棱與所成的角的大小;
(3)若點(diǎn)為的中點(diǎn),并求出二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),記點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到直線x= - 1的距離之和的最小值為M,若B(3,2),記|PB|+|PF|的最小值為N,則M+N= ______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆河南省南陽市第一中學(xué)高三上學(xué)期第八次考試】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?/span>60分到140分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組[60,70),第二組[70,80),……,第八組:[130,140],如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)估計(jì)該校的2000名學(xué)生這次考試成績的平均分(可用中值代替各組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第一組和第六組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差小于10分的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com