已知橢圓的離心率為,定點,橢圓短軸的端點是,,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點且斜率不為的直線交橢圓,兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.
(Ⅰ)解:由, 得.        ………2分
依題意△是等腰直角三角形,從而,故. …………4分
所以橢圓的方程是.                 ……5分
(Ⅱ)解:設,直線的方程為.  
將直線的方程與橢圓的方程聯(lián)立,
消去.          ……7分
所以.             ……8分
平分,則直線的傾斜角互補,
所以.                                        …………9分
,則有.
代入上式,
整理得,
所以.       ………………12分
,代入上式,
整理得.               ……………13分
由于上式對任意實數(shù)都成立,所以.
綜上,存在定點,使平分.  …………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分) 已知A(m,o),2,橢圓=1,p在橢圓上移動,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點P(4,0)的直線L與橢圓C相交于A、B兩點.
(1).求橢圓C的方程;
(2).求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)上的點M (1, )到它的兩焦點F1,F(xiàn)2的距離之和為4,A、B分別是它的左頂點和上頂點。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點,求|PQ|的最大值及此時直線l的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的上頂點為,離心率為,若不過點的動直線與橢圓相交于兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:直線過定點,并求出該定點的坐標.  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓上一點P到它的一個焦點的距離等于3,那么點P到另一個焦點的距離等于      . 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓上存在一點P,使得點P到兩焦點的距離之比為,則此橢圓離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點動點滿足,當點的縱坐標為時,點到坐標原點的距離為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)設橢圓C:的左、右焦點分別為,,點滿足  
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若已知點,設直線與橢圓C相交于A,B兩點,且
求橢圓C的方程。

查看答案和解析>>

同步練習冊答案