數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=3x+1上,n∈N*.
(1)當(dāng)實(shí)數(shù)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)bn=log4an+1,cn=an+bn,Tn是數(shù)列{cn}的前n項(xiàng)和,求Tn.
(1) t=1    (2) Tn=+

解:(1)∵點(diǎn)(Sn,an+1)在直線y=3x+1上,
∴an+1=3Sn+1,an=3Sn-1+1(n>1),
an+1-an=3(Sn-Sn-1)=3an,
∴an+1=4an,
a2=3S1+1=3a1+1=3t+1,
∴當(dāng)t=1時(shí),a2=4a1,數(shù)列{an}是等比數(shù)列.
(2)在(1)的結(jié)論下,an+1=4an,an+1=4n,
bn=log4an+1=n,
cn=an+bn=4n-1+n,
Tn=c1+c2+…+cn
=(40+1)+(41+2)+…+(4n-1+n)
=(1+4+42+…+4n-1)+(1+2+3+…+n)
=+.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當(dāng)時(shí),數(shù)列滿足,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{an}滿足an>0(n∈N*),且a5a2n-5=22n(n≥3),則當(dāng)n≥1時(shí),log2a1+log2a3+log2a5+…+log2a2n-1等于(  )
A.(n+1)2B.n2
C.n(2n-1)D.(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
 
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:bn=an+(-1)nlnan,求數(shù)列{bn}的前2n項(xiàng)和S2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{an}中,a4a8=-2,則a6(a2+2a6a10)的值為(  )
A.4B.6C.8D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

{an}為等比數(shù)列,a2=6,a5=162,則{an}的通項(xiàng)公式an=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正項(xiàng)等比數(shù)列{an}中,已知a3·a5=64,則a1+a7的最小值為(  )
A.64B.32C.16D.8

查看答案和解析>>

同步練習(xí)冊答案