10.定義:在等式(x2+x+1)n=${D}_{n}^{0}{x}^{2n}$${+D}_{n}^{1}{x}^{2n-1}{+D}_{n}^{2}{x}^{2n-2}+…{+D}_{n}^{2n-1}x{+D}_{n}^{2n}$(n∈N)中,把${D}_{n}^{0}{,D}_{n}^{1}{,D}_{n}^{2}$,…,${D}_{n}^{2n}$叫做三項式的n次系數(shù)列(如三項式的1次系數(shù)列是1,1,1).
(1)填空:三項式的2次系數(shù)列是1,2,3,2,1;三項式的3次系數(shù)列是1,3,6,7,6,3,1.
(2)由楊輝三角數(shù)陣表可以得到二項式系數(shù)的性質(zhì)${C}_{n+1}^{k}{=C}_{n}^{k}{+C}_{n}^{k-1}$,類似的請用三項式n次系數(shù)列中的系數(shù)表示${D}_{n+1}^{k+1}$(1≤k≤2n-1,k∈N)(無須證明);
(3)求${D}_{6}^{3}$的值.

分析 (1)由(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,求得2次系數(shù)列.同理根據(jù)(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,求得3次系數(shù)列.
(2)①②如圖所示:根據(jù)三項式的2次系數(shù)列和3次系數(shù)列的定義,可得結(jié)論.
(3)根據(jù)三項式的2次系數(shù)列和3次系數(shù)列的定義,再利用組合數(shù)公式的性質(zhì),可用二項式系數(shù)表示

解答 解:(1)∵(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,
∴三項式的2次系數(shù)列是1,2,3,2,1;
∵(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,
∴三項式的3次系數(shù)列是1,3,6,7,6,3,1.
(2)${D}_{n+1}^{k+1}$=${D}_{n}^{k-1}+{D}_{n}^{k}+{D}_{n}^{k+1}$( 1≤k≤2 n-1 );
(3)由(2)${D}_{6}^{3}$表示(x2+x+1)6的展開式中x9的系數(shù),所以${D}_{6}^{3}$=${C}_{6}^{4}{C}_{2}^{1}+{C}_{6}^{3}{C}_{3}^{3}$=50.

點評 本題主要考查二項式定理的應(yīng)用,組合數(shù)的計算公式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知平行四邊形ABCD,頂點A(1,1),B(4,3),C(1,-1).
(1)求D點的坐標;
(2)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,且λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x∈(0,π),任取一個x值使得cos(π-x)$>-\frac{1}{2}$的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某地區(qū)根據(jù)2008年至2014年每年的生活垃圾無害化處理量y(單位:萬噸)的數(shù)據(jù),用線性回歸模型擬合y關(guān)于t的回歸方程為$\widehat{y}$=0.92+0.1t(t表示年份代碼,自2008年起,t的取值分別為1,2,3,…),則下列的表述正確的是( 。
A.自2008年起,每年的生活垃圾無害化處理量與年份代碼負相關(guān)
B.自2008年起,每年的生活垃圾無害化處理量大約增加0.92萬噸
C.由此模型預(yù)測出2017年該地區(qū)的生活垃圾無害化處理量約1.92萬噸
D.由此模型預(yù)測出2017年該地區(qū)的生活垃圾無害化處理量約1.82萬噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某地高中年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知這些學(xué)生的原始成績均分布在[50,100]內(nèi),發(fā)布成績使用等級制,各等級劃分標準見下表,并規(guī)定:A,B,C 三級為合格,D 級為不合格.
 百分制[85,100][70,85)[60,70)[50,60)
 等級 A B C D
為了了解該地高中年級學(xué)生身體素質(zhì)情況,從中抽取了n 名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.
(Ⅰ)求n及頻率分布直方圖中 x,y 的值;
(Ⅱ)根據(jù)統(tǒng)計思想方法,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該地高中學(xué)生中任選3 人,求至少有1人成績是合格等級的概率;
(Ⅲ)上述容量為n 的樣本中,從 A、C 兩個等級的學(xué)生中隨機抽取了3 名學(xué)生進行調(diào)研,記ξ為所抽取的3 名學(xué)生中成績?yōu)?nbsp;A 等級的人數(shù),求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B,C的對邊分別為a,b,c,已知B是A、C的等差中項,且b=2,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$f(x)={log_2}\frac{1}{2-3x}$的定義域為$(-∞,\frac{2}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知α是第三象限角.且sinα=-$\frac{1}{3}$,則3cosα+4tanα=( 。
A.-$\sqrt{2}$B.$\sqrt{2}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在邊長為a的正方形內(nèi)有圖形Ω,現(xiàn)向正方形內(nèi)撒豆子,若撒在圖形Ω內(nèi)核正方形內(nèi)的豆子數(shù)分別為m,n,則圖形Ω面積的估計值為( 。
A.$\frac{ma}{n}$B.$\frac{na}{m}$C.$\frac{m{a}^{2}}{n}$D.$\frac{n{a}^{2}}{m}$

查看答案和解析>>

同步練習(xí)冊答案