試題分析:(Ⅰ)根據題意可根據中點證平行四邊形得線線平行,再根據線面平行的性質定理得線面平行。(Ⅱ)由已知條件易得
平面
.由(Ⅰ)知
∥
,即
平面
。根據面面垂直的判定定理可得平面
平面
。(Ⅲ)法一普通方法:可用等體積法求點
到面
的距離,再用線面角的定義找到線面角后求其正弦值。此法涉及到大量的計算,過程較繁瑣;法二空間向量法:建立空間直角坐標系后先求面
的法向量。
與法向量所成角余弦值的絕對值即為直線
與平面
所成角的正弦值。
試題解析:證明:(Ⅰ)
取
的中點
,連結
,交
于點
,可知
為
中點,
連結
,易知四邊形
為平行四邊形,
所以
∥
.
又
平面
,
平面
,
所以
∥平面
. 4分
證明:(Ⅱ)因為
,且
是
的中點,
所以
.
因為
平面
,所以
.
所以
平面
.
又
∥
,所以
平面
.
又
平面
,
所以平面
平面
. 9分
解:(Ⅲ)如圖建立空間直角坐標系
,
則
,
,
,
.
,
,
.
設平面
的法向量為
.
則
所以
令
.則
.
設向量
與
的夾角為
,則
.
所以直線
與平面
所成角的正弦值為
. 14分