已知向量=(sin2x+2,cosx),=(1,2cosx),設(shè)函數(shù)f(x)=
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面積為,求實(shí)數(shù)a的值.
【答案】分析:(I)利用數(shù)量積得坐標(biāo)運(yùn)算和兩角和的正弦公式及周期公式即可得出;
(II)利用三角函數(shù)的單調(diào)性、三角形的面積計(jì)算公式及其余弦定理即可得出.
解答:解:(Ⅰ)∵向量=(sin2x+2,cosx),=(1,2cosx),
∴函數(shù)f(x)==
=
=

(Ⅱ)由f(A)=4得,,∴
又∵A為△ABC的內(nèi)角,∴,∴,解得
,b=1,
,解得c=2.
由余弦定理可得a2=b2+c2-2bccosA=4+1-=3.

點(diǎn)評(píng):熟練掌握數(shù)量積得坐標(biāo)運(yùn)算和兩角和的正弦公式及周期公式、三角函數(shù)的單調(diào)性、三角形的面積計(jì)算公式及其余弦定理等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知向量
a
=(sin2
π
6
x,cos2
π
6
x
),
b
=(sin2
π
6
x,-cos2
π
6
x
),g(x)=
a
b

(Ⅰ)求函數(shù)g(x)的解析式,并求其單調(diào)增區(qū)間;
(Ⅱ)若集合M={f(x)丨f(x)+f(x+2)=f(x+1),x∈R},試判斷g(x)與集合M的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos(x+
π
8
),sin2(x+
π
8
))
,
b
=(sin(x+
π
8
),1)
,函數(shù)f(x)=2
a
b
-1

(I)求函數(shù)f(x)的解析式,并求其最小正周期;
(II)求函數(shù)y=f(-
1
2
x)
圖象的對(duì)稱中心坐標(biāo)與對(duì)稱軸方程和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)已知向量
a
=(sinx,1),
b
=(1,sin(x+
π
2
))
,設(shè)f(x)=
a
b

(1)求f(x)的單調(diào)遞增區(qū)間及最小正周期.
(2)若f(α)=
3
4
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:遼寧省大連市、沈陽(yáng)市2012屆高三第二次聯(lián)合考試數(shù)學(xué)文科試題 題型:044

已知向量m=(sin2+,sinx),n=(cos2x-sin2x,2sinx),函數(shù)f(x)=m·n

(Ⅰ)求函數(shù)f(x)的最小正周期;

(Ⅱ)若,求函數(shù)f(x)值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案