已知點P(-1,
3
2
)是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)1、F2分別是橢圓E的左、右焦點,O是坐標(biāo)原點,PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個動點,
PA
+
PB
PO
(0<λ<4,λ≠2).求證:直線AB的斜率為定值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)由已知得c=1,2a=|PF1|+|PF2|=4,由此能求出橢圓E的方程.
(2)設(shè)A(x1,y1)、B(x2,y2),利用點差法能證明AB的斜率為定值
1
2
解答: (1)∵PF1⊥x軸,∴F1(-1,0),c=1,F(xiàn)2(1,0),
∴|PF2|=
22+(
3
2
)2
=
5
2
,|PF1|=
02+(
3
2
)2
=
3
2

∴2a=|PF1|+|PF2|=4,∴a=2,∴b2=3,
∴橢圓E的方程為:
x2
4
+
y2
3
=1.
(2)證明:設(shè)A(x1,y1)、B(x2,y2),
PA
+
PB
PO
,得(x1+1,y1-
3
2
)+(x2+1,y2-
3
2
)=λ(1,-
3
2
),
所以x1+x2=λ-2,y1+y2=
3
2
(2-λ),
又3x12+4y12=12,3x22+4y22=12,
兩式相減得3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
①式代入得AB的斜率k=
y1-y2
x1-x2
=
1
2

∴直線AB的斜率為定值
1
2
點評:本題考查橢圓方程的求法,考查直線的斜率為定值的證明,解題時要認(rèn)真審題,注意點差法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)1≤x≤2時,求函數(shù)y=-x2-x+1值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在海岸線l一側(cè)C處有一個美麗的小島,某旅游公司為方便游客,在l上設(shè)立了A,B兩個報名點,滿足A,B,C中任意兩點間的距離為10千米.公司擬按以下思路運作:先將A,B兩處游客分別乘車集中到AB之間的中轉(zhuǎn)點D處(點D異于A,B兩點),然后乘同一艘游輪前往C島.據(jù)統(tǒng)計,每批游客A處需發(fā)車2輛,B處需發(fā)車4輛,每輛汽車每千米耗費4元,游輪每千米耗費24元.設(shè)∠CDA=α,每批游客從各自報名點到C島所需運輸成本S元.
(1)寫出S關(guān)于α的函數(shù)表達式,并指出α的取值范圍;
(2)問中轉(zhuǎn)點D距離A處多遠時,S最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證:對任意的正整數(shù)n,有
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(1+2x)2
2x
,判斷該函數(shù)的奇偶性并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
12
-14
,
(1)求A的逆矩陣A-1;  
(2)求A的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),其圖象關(guān)于x=1對稱,當(dāng)x∈[0,1]時,函數(shù)f(x)=x2,則f(3.5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A、B對應(yīng)的復(fù)數(shù)分別是4+i和-2+3i,則線段AB的中點對應(yīng)的復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,則x+
1
x
+1的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案