19.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}(φ為參數(shù))}$,直線L:$\left\{{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}(t為參數(shù))}$
(Ⅰ)化C,L的方程為普通方程;
(Ⅱ)求過橢圓C的右焦點(diǎn)且與直線L平行的直線的普通方程.

分析 (Ⅰ)求出參數(shù),即可化C,L的方程為普通方程;
(Ⅱ)橢圓的右焦點(diǎn)為(4,0),設(shè)直線方程為x-2y+c=0,代入(4,0),可得c=-4,即可求過橢圓C的右焦點(diǎn)且與直線L平行的直線的普通方程.

解答 解:(Ⅰ) 橢圓C:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}(φ為參數(shù))}$,消去參數(shù)可得橢圓C:$\frac{x^2}{25}+\frac{y^2}{9}=1$,
直線L:$\left\{{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}(t為參數(shù))}$,消去參數(shù)可得L:x-2y+2=0;
(Ⅱ) 橢圓的右焦點(diǎn)為(4,0),設(shè)直線方程為x-2y+c=0,
代入(4,0),可得c=-4,
∴過橢圓C的右焦點(diǎn)且與直線L平行的直線的普通方程為x-2y-4=0.

點(diǎn)評 本題考查橢圓、直線的參數(shù)方程、普通方程,考查橢圓的性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正方體的棱長為4,則它的內(nèi)切球的表面積為(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A、B、C的坐標(biāo)分別是A(3,0),B(0,3),C(cosα,sinα).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求角α的值;
(2)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=-1,求$\frac{{2{{sin}^2}α+2sinαcosα}}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.f(x)=-x2+2B.f(x)=$\frac{2}{x}$C.f(x)=($\frac{1}{2}$)xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果${(x+\frac{1}{x})^{2n}}$展開式中,第四項(xiàng)與第六項(xiàng)的系數(shù)相等.則其展開式中的常數(shù)項(xiàng)的值是( 。
A.70B.80C.252D.126

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓柱的底面直徑和高都等于球的直徑,則球的表面積與圓柱的表面積之比是2:3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足z+z•i=2,則z的虛部為( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{x}{x-1}$.
(1)證明:f(x)在區(qū)間(1,+∞)是減函數(shù);
(2)若實(shí)數(shù)m滿足f(m2)>f(m+6)>1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,x≤0}\\{{x}^{2}-4x+3,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{|lnx|,x>0}\end{array}\right.$,則函數(shù)h(x)=g(f(x))-1的零點(diǎn)個(gè)數(shù)為(  )個(gè).
A.7B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案