分析 由已知及三角形內(nèi)角的范圍可求A=B,C=π-2A,進(jìn)而可求sinA=cos2A,利用二倍角的余弦函數(shù)公式可得2sin2A+sinA-1=0,解得sinA的值,利用特殊角的三角函數(shù)值即可得解.
解答 解:在△ABC中,∵sinA=sinB=-cosC,A,B,C∈(0,π),
∴$A,B∈(0,\frac{π}{2}),C∈(\frac{π}{2},π),A=B,C=π-2A$,
又∵sinA=-cosC⇒sinA=cos2A⇒2sin2A+sinA-1=0,
∴得:$sinA=\frac{1}{2}$,
∴$A=B=\frac{π}{6},C=\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.
點(diǎn)評(píng) 本題主要考查了二倍角的余弦函數(shù)公式,特殊角的三角函數(shù)值,三角形內(nèi)角和定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (1,4) | C. | (2,4) | D. | (0,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2π | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com