分析 (1)先利用和角公式再通過(guò)二倍角公式,降次升角,化為一個(gè)角的一個(gè)三角函數(shù)的形式,通過(guò)函數(shù)的周期,求實(shí)數(shù)ω的值;
(2)由于x是[0,$\frac{π}{2}$]范圍內(nèi)的角,得到2x+$\frac{π}{4}$的范圍,然后通過(guò)正弦函數(shù)的單調(diào)性求出f(x)在區(qū)間[0,$\frac{π}{2}$]上的單調(diào)性.
解答 解:(1)f(x)=4cos?x•sin(?x+$\frac{π}{4}}$)(?>0)=2$\sqrt{2}$sinωx•cosωx+2$\sqrt{2}$cos2ωx
=$\sqrt{2}$(sin2ωx+cos2ωx)+$\sqrt{2}$=2sin(2ωx+$\frac{π}{4}$)+$\sqrt{2}$,
所以 T=$\frac{2π}{2ω}$=π,
∴ω=1.
(2)由(1)知,f(x)=2sin(2x+$\frac{π}{4}$)+$\sqrt{2}$,
因?yàn)?≤x≤$\frac{π}{2}$,所以$\frac{π}{4}$≤2x+$\frac{π}{4}$≤$\frac{5π}{4}$,
當(dāng)$\frac{π}{4}$≤2x+$\frac{π}{4}$≤$\frac{π}{2}$時(shí),即0≤x≤$\frac{π}{8}$時(shí),f(x)是增函數(shù),故f(x)的最小值是2$\sqrt{2}$,最大值是2+$\sqrt{2}$;
當(dāng)$\frac{π}{2}$≤2x+$\frac{π}{4}$≤$\frac{5π}{4}$時(shí),即$\frac{π}{8}$≤x≤$\frac{π}{2}$時(shí),f(x)是減函數(shù),故f(x)的最小值是0,最大值是2+$\sqrt{2}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,恒等關(guān)系的應(yīng)用,注意三角函數(shù)值的變換,考查計(jì)算能力,常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com