【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
【答案】
(1)證明:由題意,以B為坐標原點,在平面DBC內過B作垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內過B作垂直BC的直線為z軸,建立如圖所示空間直角坐標系,易得B(0,0,0),A(0,﹣1, ),D( ,﹣1,0),C(0,2,0),因而E(0, , ),F(xiàn)( , ,0),所以 =( ,0,﹣ ), =(0,2,0),因此 =0,所以EF⊥BC.
(2)解:在圖中,設平面BFC的一個法向量 =(0,0,1),平面BEF的法向量 =(x,y,z),又 =( , ,0), =(0, , ),
由 得其中一個 =(1,﹣ ,1),
設二面角E﹣BF﹣C的大小為θ,由題意知θ為銳角,則
cosθ=|cos< , >|=| |= ,
因此sinθ= = ,即所求二面角正弦值為 .
【解析】(1)以B為坐標原點,在平面DBC內過B作垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內過B作垂直BC的直線為z軸,建立如圖所示空間直角坐標系,得到E、F、B、C點的坐標,易求得此 =0,所以EF⊥BC;(2)設平面BFC的一個法向量 =(0,0,1),平面BEF的法向量 =(x,y,z),依題意,可求得一個 =(1,﹣ ,1),設二面角E﹣BF﹣C的大小為θ,可求得sinθ的值.
【考點精析】根據(jù)題目的已知條件,利用直線與平面垂直的性質的相關知識可以得到問題的答案,需要掌握垂直于同一個平面的兩條直線平行.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲、乙兩個項目,對甲項目每投資10萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為;已知乙項目的利潤與產品價格的調整有關,在每次調整中,價格下降的概率都是p(0<p<1),設乙項目產品價格在一年內進行兩次獨立的調整.記乙項目產品價格在一年內的下降次數(shù)為X,對乙項目每投資10萬元,X取0、1、2時,一年后相應利潤是1.3萬元、1.25萬元、0.2萬元.隨機變量X1、X2分別表示對甲、乙兩項目各投資10萬元一年后的利潤.
(1)求X1,X2的概率分布和均值E(X1),E(X2);
(2)當E(X1)<E(X2)時,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是上的增函數(shù).當實數(shù)取最大值時,若存在點,使得過點的直線與曲線圍成兩個封閉圖形,且這兩個封閉圖形的面積總相等,則點的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調查了該險種的200名續(xù)保人在一年內的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某市統(tǒng)考的學生數(shù)學考試卷中隨機抽查100份數(shù)學試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分別直方圖.
(1)求這100份數(shù)學試卷成績的中位數(shù);
(2)從總分在和的試卷中隨機抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點在上,在梯形區(qū)域內部展示文物,是玻璃幕墻,游客只能在區(qū)域內參觀.在上點處安裝一可旋轉的監(jiān)控攝像頭.為監(jiān)控角,其中、在線段(含端點)上,且點在點的右下方.經測量得知:米,米,米,.記(弧度),監(jiān)控攝像頭的可視區(qū)域的面積為平方米.
(1)求關于的函數(shù)關系式,并寫出的取值范圍;(參考數(shù)據(jù):)
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線C: ﹣y2=1(a>0)的右焦點為F,點A,B分別在C的兩條漸近線AF⊥x軸,AB⊥OB,BF∥OA(O為坐標原點).
(1)求雙曲線C的方程;
(2)過C上一點P(x0 , y0)(y0≠0)的直線l: ﹣y0y=1與直線AF相交于點M,與直線x= 相交于點N.證明:當點P在C上移動時, 恒為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為,,,數(shù)列滿足:,.
(1)求;
(2)求數(shù)列的通項公式及其前項和;
(3)記集合,若的子集個數(shù)為32,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com