【題目】從分別寫(xiě)有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( )

A. B. C. D.

【答案】D

【解析】

分別計(jì)算出從分別寫(xiě)有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張的總的事件數(shù)和抽得的第一張卡片上的數(shù)大于第二張卡片上的的事件數(shù)的個(gè)數(shù),利用古典概型概率公式計(jì)算可得答案.

解:從分別寫(xiě)有1234,55張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張的基本事件總數(shù);

抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)包含的基本事件有:

(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)共有10個(gè)基本事件,

∴抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率,

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線(xiàn)的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線(xiàn)段的中點(diǎn)的軌跡為與直線(xiàn)交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知圓是以極坐標(biāo)系中的點(diǎn)為圓心,為半徑的圓,直線(xiàn)的參數(shù)方程為.

(1)求的直角坐標(biāo)系方程;

(2)若直線(xiàn)與圓交于,兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).(是常數(shù),且()

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)處取得極值時(shí),若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍

(Ⅲ)求證:當(dāng)時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,,分別是其左、右焦點(diǎn),且過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方體的棱長(zhǎng)為2,則以下四個(gè)命題中錯(cuò)誤的是

A. 直線(xiàn)為異面直線(xiàn) B. 平面

C. D. 三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)式過(guò)馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對(duì)“中國(guó)式過(guò)馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:

項(xiàng)目

男性

女性

總計(jì)

反感

10

不反感

8

總計(jì)

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過(guò)馬路”的路人的概率是.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(直接寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程),并據(jù)此資料分析反感“中國(guó)式過(guò)馬路”與性別是否有關(guān)?

(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國(guó)式過(guò)馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;

2)證明:fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知汽車(chē)站每天上午,之間都恰有一輛長(zhǎng)途汽車(chē)經(jīng)過(guò),但是長(zhǎng)途車(chē)到站的時(shí)間是隨機(jī)的,且每輛車(chē)的到站時(shí)間是相互獨(dú)立的,汽車(chē)到站后即停即走,據(jù)統(tǒng)計(jì)汽車(chē)到站規(guī)律為:

現(xiàn)有一位旅客在到達(dá)汽車(chē)站,問(wèn):

(1)該旅客候車(chē)時(shí)間不超過(guò)20分鐘的概率;

(2)記該旅客的候車(chē)時(shí)間為,求的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案