【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費(fèi)點(diǎn)處記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過的車輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車通過該收費(fèi)點(diǎn),它們通過該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.比方:10點(diǎn)04分,記作時(shí)刻64.
(1)估計(jì)這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)為了對數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機(jī)抽取4輛,記為9:20~10:00之間通過的車輛數(shù),求的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車輛在春節(jié)期間每天通過該收費(fèi)點(diǎn)的時(shí)刻服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車通過該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
【答案】(1)10點(diǎn)04分;(2)詳見解析;(3)819輛.
【解析】
(1)用每組中點(diǎn)值乘以頻率,然后相加,得到平均值.(2)先用分層抽樣的知識(shí)計(jì)算出量車中位于的車輛數(shù),然后利用超幾何分布的知識(shí)計(jì)算出分布列,并求得數(shù)學(xué)期望.(3)由(1)可知,計(jì)算出方差和標(biāo)準(zhǔn)差,利用正態(tài)分布的對稱性,計(jì)算出在9:46~10:40這一時(shí)間段內(nèi)通過的車輛的概率,乘以得到所求車輛數(shù).
解:(1)這600輛車在9:20~10:40時(shí)間段內(nèi)通過該收費(fèi)點(diǎn)的時(shí)刻的平均值為,即10點(diǎn)04分。
(2)結(jié)合頻率分布直方圖和分層抽樣的方法可知:抽取的10輛車中,在10:00前通過的車輛數(shù)就是位于時(shí)間分組中在這一區(qū)間內(nèi)的車輛數(shù),即,所以的可能取值為0,1,2,3,4。
所以,,,,,
所以的分布列為
0 | 1 | 2 | 3 | 4 | |
所以.
(3)由(1)可得,
,
所以.
估計(jì)在9:46~10:40這一時(shí)間段內(nèi)通過的車輛數(shù),也就是通過的車輛數(shù),
由,得 ,
所以,估計(jì)在9:46~10:40這一時(shí)間段內(nèi)通過的車輛數(shù)為(輛).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識(shí)競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | |||
不獲獎(jiǎng) | |||
合計(jì) |
附表及公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】40名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù) (保留小數(shù)點(diǎn)后兩位數(shù)字)和眾數(shù);
(3)從成績在的學(xué)生中任選3人,求這3人的成績都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an2+4an﹣8Sn=0,則an=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過橢圓E:(a>b>0)的左焦點(diǎn)F1作x軸的垂線交橢圓E于P,Q兩點(diǎn),點(diǎn)A,B是橢圓E的頂點(diǎn),且AB∥OP,F2為右焦點(diǎn),△PF2Q的周長為8.
(1)求橢圓E的方程;
(2)過點(diǎn)F1作直線l與橢圓E交于C,D兩點(diǎn),若△OCD的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,一動(dòng)圓與直線相切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過作直線,交(1)中軌跡于兩點(diǎn),若中點(diǎn)的縱坐標(biāo)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,證明:;
(2)已知,若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下圖頻率分布直方圖:
(I)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(II)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.
附:
若則,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com