【題目】
從某企業(yè)生產的某種產品中抽取500件,測量這些產品的一項質量指標值,由測量結果得如下圖頻率分布直方圖:
(I)求這500件產品質量指標值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(II)由直方圖可以認為,這種產品的質量指標服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)某用戶從該企業(yè)購買了100件這種產品,記表示這100件產品中質量指標值位于區(qū)間的產品件數(shù).利用(i)的結果,求.
附:
若則,.
【答案】(I);(II)(i);(ii).
【解析】
試題(I)由頻率分布直方圖可估計樣本特征數(shù)眾數(shù)、中位數(shù)、均值、方差.若同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表,則眾數(shù)為最高矩形中點橫坐標.中位數(shù)為面積等分為的點.均值為每個矩形中點橫坐標與該矩形面積積的累加值.方差是矩形橫坐標與均值差的平方的加權平均值.(II)(i)由已知得,
,故;(ii)某用戶從該企業(yè)購買了100件這種產品,相當于100次獨立重復試驗,則這100件產品中質量指標值位于區(qū)間的產品件數(shù),故期望.
試題(I)抽取產品的質量指標值的樣本平均值和樣本方差分別為
,
.
(II)(i)由(I)知,服從正態(tài)分布,從而
.
(ii)由(i)可知,一件產品的質量指標值位于區(qū)間的概率為,依題意知,所以.
科目:高中數(shù)學 來源: 題型:
【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費點處記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如圖所示,其中時間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.比方:10點04分,記作時刻64.
(1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,記為9:20~10:00之間通過的車輛數(shù),求的分布列與數(shù)學期望;
(3)由大數(shù)據(jù)分析可知,車輛在春節(jié)期間每天通過該收費點的時刻服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點,點是橢圓上不同的兩點(均異于)且滿足直線與斜率之積為.試判斷直線是否過定點,若是,求出定點坐標,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為.
(1)當時,若函數(shù)在區(qū)間上有最大值,求的取值范圍;
(2)求函數(shù)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關于軸的對稱點.求證:
(i)三點共線.
(ii).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C:過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A、B兩點.設點P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點P為平面上的動點,過點P作直線l:的垂線,垂足為Q,且.
Ⅰ求動點P的軌跡C的方程;
Ⅱ設點P的軌跡C與x軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,設函數(shù),求函數(shù)的單調區(qū)間和極值;
(2)設是的導函數(shù),若對任意的恒成立,求的取值范圍;
(3)若,,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com