(本小題滿分12分)
如圖示,AB是圓柱的母線,BD是圓柱底面圓的直徑,C是底面圓周上一點(diǎn),E是AC中點(diǎn),且.

(1)求證:
(2)求直線BD與面ACD所成角的大小.

(1)∵BD是底面圓直徑,∴,又,,∴,從而(2)

解析試題分析:(1)證明:∵BD是底面圓直徑,
,……2分
,
,……4分
從而,;…………5分
(2)連接DE,由(1)知,

又E是AC中點(diǎn),
,所以,.………7分
于是,直線BD與面ACD所成角為,………9分
,則,即為直角三角形.
,則
,所以!12分
考點(diǎn):本題考查了圓柱中線面關(guān)系
點(diǎn)評(píng):空間幾何體中的線面角一般都是利用定義作出角,然后再直角三角形中求出即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正方體中,棱長(zhǎng)為2,是棱上中點(diǎn),是棱中點(diǎn),(1)求證:;(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖,已知平面與直線均垂直于所在平面,且,

(Ⅰ)求證:平面; 
(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分1 2分)
如圖,四邊形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABCD平面EFDC,設(shè)AD中點(diǎn)為P.

( I )當(dāng)E為BC中點(diǎn)時(shí),求證:CP//平面ABEF
(Ⅱ)設(shè)BE=x,問當(dāng)x為何值時(shí),三棱錐A-CDF的體積有最大值?并求出這個(gè)最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點(diǎn).

(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值;
(3)以AC的中點(diǎn)O為球心、AC為直徑的球交PC于點(diǎn)N求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某建筑物的上半部分是多面體, 下半部分是長(zhǎng)方體(如圖). 該建筑物的正視圖和側(cè)視圖(如圖), 其中正(主)視圖由正方形和等腰梯形組合而成,側(cè)(左)視圖由長(zhǎng)方形和等腰三角形組合而成.


(Ⅰ)求直線與平面所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求該建筑物的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)如圖,已知四棱錐底面為菱形,平面,,分別是、的中點(diǎn).
(1)證明:
(2)設(shè), 若為線段上的動(dòng)點(diǎn),與平面所成的最大角的正切值為
,求此時(shí)異面直線AE和CH所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題15分)如圖,AC 是圓 O 的直徑,點(diǎn) B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點(diǎn) M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).

(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案