【題目】在平面直角坐標(biāo)系中,,軸上兩個動點,點在直線上,且滿足,.

(1)求點的軌跡方程;

(2)記點的軌跡為曲線,為曲線正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,試探究面積的最大值.

【答案】(1)(2)

【解析】

1)通過引入?yún)?shù),分別表示點的橫縱坐標(biāo),得到其參數(shù)方程,再消去參數(shù)得到其軌跡方程.

2)按照直線斜率是否存在分兩種情況進行討論,對于斜率存在的情況,通過設(shè)出方程,代入曲線消去得到關(guān)于的一元二次方程,利用韋達定理,結(jié)合題目條件求出m的值,從而求出關(guān)于的表達式,再利用基本不等式即可求出最大值.

(1)設(shè),,,

故點的軌跡方程為

(2)①當(dāng)直線的斜率不存在時,

設(shè)

,不合題意.

②當(dāng)直線的斜率存在時,設(shè)

聯(lián)立方程

,

代入上式得

∴直線過定點,所以直線MN: ,即

則三角形GMN的底MN上的高為,

當(dāng)且僅當(dāng)時取等號

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓過點A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于BC兩點(異于點A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費 (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:

(1)若近6年的宣傳費與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;

(2)若利潤與宣傳費的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率

附:回歸方程的斜率與截距的最小二乘法估計分別為,

,其中 , 的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為2的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大;

3)設(shè)棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,為橢圓上不與左右頂點重合的任意一點,分別為的內(nèi)心、重心,當(dāng)軸時,橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,,軸上兩個動點,點在直線上,且滿足,.

(1)求點的軌跡方程;

(2)記點的軌跡為曲線,為曲線正半軸的交點,、為曲線上與不重合的兩點,且直線與直線的斜率之積為,求證直線經(jīng)過一個定點,并求出該定點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為偶函數(shù).

1 的值;

2)若的最小值為,求的最大值及此時的取值;

3)在(2)的條件下,設(shè)函數(shù),其中.已知處取得最小值并且點是其圖象的一個對稱中心,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案