【題目】如圖,在平面直角坐標系xOy中,已知橢圓過點A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于B,C兩點(異于點A),線段BCy軸平分,且,求直線l的方程.

【答案】(1)(2)

【解析】試題分析:(1)由離心率知,橢圓過點A(2,1),代入橢圓方程,可解得.(2)由題意可得直線BC一定過(0,0)點,即m=0, 代入橢圓方程得,又,即代入坐標運算可解得k.

試題解析:(Ⅰ)由條件知橢圓離心率為 ,

所以

又點A(2,1)在橢圓上,

所以, 解得

所以,所求橢圓的方程為

(Ⅱ)將代入橢圓方程,得,

整理,得

由線段BCy軸平分,得,

因為,所以

因為當時, 關于原點對稱,設

由方程①,得,

又因為A(2,1),

所以 ,

所以

由于時,直線過點A(2,1),故不符合題設.

所以,此時直線l的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】矩形中, ,點中點,沿折起至,如下圖所示,點在面的射影落在上.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,直線y=x+2過橢圓C的左焦點F1

(1)求橢圓C的標準方程;

(2)設過點A(0,﹣1)的直線l與橢圓交于不同兩點M、N,當△MON的面積為 時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在[﹣2,2]上的奇函數(shù)f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上單調遞增,且f(m)+f(m﹣1)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體中,四邊形為平行四邊形,其中,,等邊所在平面與平面垂直,平面,且.

(Ⅰ)點在棱上,且的重心,求證:平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形,其中,,,等邊所在平面與平面垂直.

(Ⅰ)點在棱上,且,的重心,求證:平面;

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質.例如函數(shù) 在[1,9]上就具有“DK”性質.
(1)判斷函數(shù)f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性質?說明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(log2x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=a2x﹣4在區(qū)間(0,2)內有兩個不相等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案