12.若函數(shù)f(x)=(a-2)•ax為指數(shù)函數(shù),則a=3.

分析 若函數(shù)f(x)=(a-2)•ax為指數(shù)函數(shù),則$\left\{\begin{array}{l}a-2=1\\ a>0,且a≠1\end{array}\right.$,解得答案.

解答 解:∵函數(shù)f(x)=(a-2)•ax為指數(shù)函數(shù),
∴$\left\{\begin{array}{l}a-2=1\\ a>0,且a≠1\end{array}\right.$,
解得:a=3,
故答案為:3

點評 本題考查的知識點是指數(shù)函數(shù)的定義,熟練掌握指數(shù)函數(shù)解析式中參數(shù)的限制和范圍,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合M={x|(x+2)(x-2)≤0},N={x|x-1<0},則M∩N=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤1}C.{x|-2<x≤1}D.{x|x<-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)3,x,5成等差數(shù)列,則x為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y={(2+x)^0}-\sqrt{2+x}$的定義域為( 。
A.[-2,+∞)B.[-2,0)∪(0,+∞)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列集合不是{1,2,3}的真子集的是( 。
A.{1}B.{2,3}C.D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=x2-2x+2,x∈[0,3]的值域為(  )
A.[1,+∞)B.[2,+∞)C.[1,5]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=2x-m.
(1)當m=8時,求函數(shù)f(x)的零點.
(2)當m=-1時,判斷g(x)=$\frac{1}{2}-\frac{1}{f(x)}$的奇偶性并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow{a}$⊥$\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$+2$\overrightarrow$與λ$\overrightarrow{a}$-$\overrightarrow$垂直,則實數(shù)λ的值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.點A(1,-2)、B(2,1)所對應(yīng)的復(fù)數(shù)分別是z1、z2,O是坐標原點.
(1)求復(fù)數(shù)z=2z1+z2及模|z|;
(2)判斷復(fù)數(shù)1+z1•$\overline{{z}_{2}}$所對應(yīng)的點所在的象限.

查看答案和解析>>

同步練習(xí)冊答案