1.設(shè)全集U={1,2,3,4,5,6,7,8},A={1,4,8},B={3,4,7},則(∁UA)∩B=( 。
A.{4}B.{3,4,7}C.{3,7}D.

分析 根據(jù)補運算、交運算的定義,計算即得結(jié)論.

解答 解:∵U={1,2,3,4,5,6,7,8},A={1,4,8},
∴∁UA={2,3,5,6,7},
又∵B={3,4,7},
∴(∁UA)∩B={3,7},
故選:C.

點評 本題考查集合的補、交運算,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式$\frac{x-3}{x+2}$≤0的解集為( 。
A.{x|-2<x≤3}B.{x|-2≤x≤3}C.{x|x<-2或x>3}D.{x|-2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.m,n為實數(shù),命題p:m+n>2;命題q:m>1且n>1,則p是q的( 。
A.充分不必要的條件B.必要不充分的條件
C.充要條件D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要得到函數(shù)y=cos(2x+1)的圖象,可以將函數(shù)y=cos(2x-1)的圖象( 。
A.向左平移1個單位B.向右平移1個單位C.向左平移2個單位D.向右平移2個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),則下列說法中不正確的是( 。
A.由樣本數(shù)據(jù)得到的回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$必過樣本中心($\overline{x}$,$\overline{y}$)
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點O(0,0),A(1,2),B(4,5)及$\overrightarrow{OP}$=$\overrightarrow{OA}$+t•$\overrightarrow{AB}$,試問:
(1)當t為何值時,P在x軸上.
(2)若$\overrightarrow{OB}$⊥$\overrightarrow{OP}$,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xeax(x∈R)
(Ⅰ)若a=1,求函數(shù)y=f(x)在x=0處的切線方程;
(Ⅱ)若a=-1,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若a=-1,且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,求證:當x>1時,f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=ax-lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)當a=1時,求證:對于區(qū)間(0,e](其中e為自然對數(shù)的底數(shù))上的任意兩個值x1,x2,總有g(shù)(x1)>f(x2)+$\frac{1}{2}$;
(3)若g(x)在(0,e]上的最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:$\frac{sinx}{1+cosx}$-$\frac{cosx}{1+sinx}$=$\frac{2(sinx-cosx)}{1+sinx+cosx}$.

查看答案和解析>>

同步練習(xí)冊答案