12.在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;在四邊形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立;在五邊形ABCDE中,$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.猜想在n邊形中,成立的不等式為(  )
A.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{n}{π}$B.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+1)π}$
C.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$D.$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+2)π}$

分析 觀察已知條件,找出規(guī)律,猜想在n邊形中,成立的不等式即可.

解答 解:在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;
在四邊形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立;
在五邊形ABCDE中,$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.

左側(cè)是內(nèi)角的倒數(shù)的和,右側(cè)是分子為邊數(shù)的平方,分母是(n-2)π.
猜想在n邊形中,成立的不等式為:$\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$.
故選:C.

點(diǎn)評(píng) 本題主要考查歸納推理的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,BC=1,B=$\frac{π}{3}$,當(dāng)△ABC的面積等于$\sqrt{3}$時(shí),sinC等于(  )
A.$\frac{{2\sqrt{39}}}{13}$B.$\frac{{\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{3}$D.$\frac{{2\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若Cn3=10,則n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若函數(shù)f(x)=asin(x-$\frac{π}{3}$)+b滿(mǎn)足f($\frac{π}{3}$)+f($\frac{π}{2}$)=7且f(π)-f(0)=2$\sqrt{3}$.求
(1)f(x)的解析式及f(x)的單調(diào)減區(qū)間;
(2)使f(x)=4的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知正項(xiàng)等比數(shù)列{an}滿(mǎn)足:a6=a5+2a4,若存在兩項(xiàng)am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=2a1,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為(  )
A.6B.5C.$\frac{28}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知x>0,y>0,x+2y-xy=0.
(Ⅰ)求xy的最小值;
(Ⅱ)求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知($\root{3}{x}$+x22n的展開(kāi)式的系數(shù)和比(3x-1)n的展開(kāi)式的系數(shù)和大992.求在(2x-$\frac{1}{x}$)2n的展開(kāi)式中:
(1)常數(shù)項(xiàng)(用數(shù)字表示);
(2)二項(xiàng)式系數(shù)最大的項(xiàng)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知($\root{3}{x}$+x22n的展開(kāi)式的二項(xiàng)式系數(shù)之和比(3x-1)n的展開(kāi)式的二項(xiàng)系數(shù)之和大992.求(2x+$\frac{1}{x}$)2n的展開(kāi)式中:
(1)常數(shù)項(xiàng);
(2)系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow{p}$與$\overrightarrow{q}$是兩個(gè)夾角為60°的單位向量,且2$\overrightarrow{p}$-$\overrightarrow{q}$與k$\overrightarrow{p}$+$\overrightarrow{q}$的夾角為120°,求k.

查看答案和解析>>

同步練習(xí)冊(cè)答案