A. | 6 | B. | 5 | C. | $\frac{28}{3}$ | D. | 4 |
分析 根據(jù)等比數(shù)列的通項(xiàng)公式建立條件關(guān)系求出m+n=4,利用基本不等式進(jìn)行求解即可.
解答 解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q>0,
∵a6=a5+2a4,∴a1q5=a1q4+2a1q3,
化為q2-q-2=0,又q>0,解得q=2.
∵存在兩項(xiàng)am,an使得$\sqrt{{a}_{m}{a}_{n}}$=2a1,
∴$\sqrt{{a}_{1}{2}^{m-1}•{a}_{1}{2}^{n-1}}$=2a1,
平方化簡(jiǎn)2m+n-2=4,
∴m+n-2=2,即m+n=4.
∴$\frac{m}{4}$+$\frac{n}{4}$=1,
則$\frac{1}{m}$+$\frac{9}{n}$=($\frac{1}{m}$+$\frac{9}{n}$)($\frac{m}{4}$+$\frac{n}{4}$)=$\frac{1}{4}$+$\frac{9}{4}$+$\frac{n}{4m}$+$\frac{9m}{4n}$≥$\frac{10}{4}$+2$\sqrt{\frac{n}{4m}•\frac{9m}{4n}}$=$\frac{5}{2}$$+2×\frac{3}{4}$
=$\frac{5}{2}+\frac{3}{2}=\frac{8}{2}$=4.
當(dāng)且僅當(dāng)$\frac{n}{4m}$=$\frac{9m}{4n}$,即n=3m時(shí)取等號(hào),
故$\frac{1}{m}$+$\frac{9}{n}$的最小值為4,
故選:D
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、基本不等式等基礎(chǔ)知識(shí)與基本技能方法,利用1的代換是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{n}{π}$ | B. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+1)π}$ | ||
C. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n-2)π}$ | D. | $\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…$\frac{1}{{A}_{n}}$≥$\frac{{n}^{2}}{(n+2)π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 1 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.9544 | B. | 0.6826 | C. | 0.9974 | D. | 0.9772 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0) | B. | (0,-1) | C. | (1,1) | D. | (-1,-1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com