【題目】已知命題p:方程表示焦點(diǎn)在x軸上的橢圓;命題q:雙曲線的離心率e∈.若命題“p∨q”為真命題,“p∧q”為假命題,求m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個(gè)結(jié)論:( )
①與負(fù)相關(guān)且. ②與負(fù)相關(guān)且
③與正相關(guān)且 ④與正相關(guān)且
其中正確的結(jié)論的序號(hào)是( )
A. ①② B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)為選拔選手參加“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”,某中學(xué)舉行了一次“漢字聽(tīng)寫(xiě)大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿(mǎn)分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照, , , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的、的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”,求所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如表:
已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級(jí)女生的概率是0.19.
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問(wèn)應(yīng)該在高三年級(jí)抽取多少名?
(3)已知,求高三年級(jí)中女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從拋物線y2=32x上各點(diǎn)向x軸作垂線,其垂線段中點(diǎn)的軌跡為E.
(1)求軌跡E的方程;
(2)已知直線l:y=k(x-2)(k>0)與軌跡E交于A,B兩點(diǎn),且點(diǎn)F(2,0),若|AF|=2|BF|,求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿(mǎn)足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)當(dāng)a=2時(shí),求A∪B和(RA)∩B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率是,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)記橢圓的右頂點(diǎn)為,點(diǎn)()在橢圓上,直線交軸于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),直線交軸于點(diǎn).問(wèn): 軸上是否存在點(diǎn),使得(為坐標(biāo)原點(diǎn))?若存在,求點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°.
①證明:平面PBC⊥平面ABCD;
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com