【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個(gè)結(jié)論:(  )

負(fù)相關(guān)且. ②負(fù)相關(guān)且

正相關(guān)且正相關(guān)且

其中正確的結(jié)論的序號(hào)是(

A. ①② B. ②③ C. ①④ D. ③④

【答案】C

【解析】由回歸直線方程可知, ①③負(fù)相關(guān), ②④正相關(guān), ①④正確,故選C.

點(diǎn)睛: 兩個(gè)變量的線性相關(guān):(1)正相關(guān):在散點(diǎn)圖中,點(diǎn)散布在從左下角到右上角的區(qū)域.對(duì)于兩個(gè)變量的這種相關(guān)關(guān)系,我們將它稱為正相關(guān).(2)負(fù)相關(guān):在散點(diǎn)圖中,點(diǎn)散布在從左上角到右下角的區(qū)域,兩個(gè)變量的這種相關(guān)關(guān)系為負(fù)相關(guān).(3)線性相關(guān)關(guān)系、回歸直線:如果散點(diǎn)圖中點(diǎn)的分布從整體上看大致在一條直線附近 ,就稱這兩個(gè)變量之間具有線性相關(guān)關(guān)系,這條直線叫做回歸直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1﹣ (a>0且a≠1)是定義在R上的奇函數(shù).
(1)求a的值;
(2)求f(x)的值域;
(3)若關(guān)于x的方程|f(x)(2x+1)|=m有1個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍;
(4)當(dāng)x∈(0,1]時(shí),tf(x)≥2x﹣2恒成立,求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:

根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說(shuō)法中,不正確的是

A. 首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用

B. 每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒

C. 每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用

D. 首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形為等腰梯形, , ,四邊形為正方形,平面平面.

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證: ∥平面

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點(diǎn),使平面平面?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在國(guó)家“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入,已知研發(fā)投入 (十萬(wàn)元)與利潤(rùn) (百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

2

3

4

5

6

2

4

5

6

7

若由資料知對(duì)呈線性相關(guān)關(guān)系。試求:

1)線性回歸方程;

2)估計(jì)時(shí),利潤(rùn)是多少?

附:利用最小二乘法計(jì)算a,b的值時(shí),可根據(jù)以下公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求函數(shù)f(x)在區(qū)間[2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的焦點(diǎn)為,直線過(guò)且依次交拋物線及圓于點(diǎn)四點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:方程表示焦點(diǎn)在x軸上的橢圓;命題q:雙曲線的離心率e.若命題“pq”為真命題,“pq”為假命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案