5.函數(shù)f(x)=sinx-4sin3$\frac{x}{2}$cos$\frac{x}{2}$的最小正周期為π.

分析 由已知利用倍角公式,降冪公式化簡可得f(x)=$\frac{1}{2}$sin2x,進(jìn)而利用周期公式即可計(jì)算得解.

解答 解:∵f(x)=sinx-4sin3$\frac{x}{2}$cos$\frac{x}{2}$=sinx-2sin2$\frac{x}{2}$(2sin$\frac{x}{2}$cos$\frac{x}{2}$)=sinx-2sin2$\frac{x}{2}$sinx=sinx-(1-cosx)sinx=sinxcosx=$\frac{1}{2}$sin2x,
∴最小正周期T=$\frac{2π}{2}$=π.
故答案為:π.

點(diǎn)評 本題主要考查了倍角公式,降冪公式,三角函數(shù)的周期性及其求法,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,作平行于BC的直線交AB于D,交AC于E,如果BE和CD相交于點(diǎn)O,AO和DE相交于點(diǎn)F,AO的延長線和BC相交于G.證明:
(1)$\frac{DF}{BG}$=$\frac{EF}{GC}$;
(2)DF=FE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn,若Sk=90.
(1)求a及k的值;   
(2)設(shè)bn=$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$,x∈R,a為常數(shù);
(1)當(dāng)a=1時,判斷f(x)的奇偶性;
(2)求證:f(x)是R上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a=4${\;}^{{{log}_3}4.1}}$,b=4${\;}^{{{log}_3}2.7}}$,c=($\frac{1}{2}$)${\;}^{{{log}_3}0.1}}$則( 。
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線mx+y-m-1=0(m是參數(shù)且m∈R)過定點(diǎn)( 。
A.(1,-1)B.(-1,1)C.(1,1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={x|-2≤x≤2},B={x|a≤x≤a+2},當(dāng)A∪B=A時,實(shí)數(shù)a的取值范圍是( 。
A.(-2,0]B.[-2,0)C.(-2,0)D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.f(x)=x2+ax+1在(1,+∞)為單調(diào)遞增,則a的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),f(x)滿足f(x+1)-f(x)=2x-1
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(x)-mx,若對任意的x1,x2∈[1,2],都有|g(x1)-g(x2)|≤2成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案