1.M是半徑為R的圓周上一個(gè)定點(diǎn),在圓周上等可能任取一點(diǎn)N,連接MN,則弦MN的長度超過$\sqrt{3}R$的概率是$\frac{1}{3}$.

分析 本題考查的知識(shí)點(diǎn)是幾何概型的意義,關(guān)鍵是要找出滿足條件弦MN的長度超過$\sqrt{3}$R的圖形測度,再代入幾何概型計(jì)算公式求解.

解答 解:本題利用幾何概型求解.測度是弧長.
根據(jù)題意可得,滿足條件:“弦MN的長度超過$\sqrt{3}$R”對應(yīng)的弧,
弦MN的長度等于$\sqrt{3}$R時(shí),圓心角為120°,弦MN的長度超過$\sqrt{3}$R時(shí),構(gòu)成的區(qū)域圓心角為360°-240°=120°,
則弦MN的長度超過$\sqrt{3}$R的概率是P=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,且△ABC的面積為10$\sqrt{3}$,a+b=13,∠C=60°,求這個(gè)三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列等式正確的是( 。
A.$\overrightarrow{AB}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$B.$\overrightarrow{AB}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$C.$\overrightarrow{AB}$-$\overrightarrow{BA}$=$\overrightarrow 0$D.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出命題:p:$\sqrt{2}$>1,q:y=tanx是偶函數(shù),則有三個(gè)命題:“p且q”、“p或q”、“非p”中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=-x3+ax2-3x,g(x)=2x2ln|x|.
(1)若函數(shù)f(x)在R上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)判斷函數(shù)g(x)的奇偶性,并寫出g(x)的單調(diào)區(qū)間;
(3)若對一切x∈(0,+∞),函數(shù)f(x)的圖象恒在g(x)圖象的下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)銳角△ABC的外接圓為圓Γ,過點(diǎn)B,C作圓Γ的兩條切線交于點(diǎn)P,鏈接AP與BC交于點(diǎn)D,點(diǎn)E,F(xiàn)分別在邊AC,AB上,使得DE∥BA,DF∥CA.證明:F,B,C,E四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知CD是△ABC的高,DE⊥CA,DF⊥CB,求證:△CEF∽△CBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某小區(qū)現(xiàn)有一塊草坪ABCD呈平行四邊形形狀,AB=3,AD=2,∠BAD=60°,為了改善居民的生活環(huán)境,決定將原草坪擴(kuò)建成三角形PAQ形狀,點(diǎn)A,D,P共線,Q,C,P共線,A,B,Q共線,設(shè)AP=x,BQ=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)求△APQ面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2,四個(gè)頂點(diǎn)圍成的四邊形面積為4$\sqrt{2}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)P(0,1)的動(dòng)直線與橢圓交于A,B兩點(diǎn).是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案