16.如圖是一個(gè)幾何體的三視圖,若它的體積是3$\sqrt{3}$,則a=3.

分析 該幾何體是放倒的三棱柱,依據(jù)所給數(shù)據(jù)求解即可.

解答 解:由已知可知此幾何體是三棱柱,其高為a,側(cè)面是邊長為2的正三角形,其面積為S=$\frac{1}{2}×\sqrt{3}×2$=$\sqrt{3}$,
由題意可得:V=3$\sqrt{3}$=$\sqrt{3}$a,
解得:a=3.
故答案為:3.

點(diǎn)評(píng) 本小題考查三視圖、三棱柱的體積,考查了簡單幾何體的三視圖的運(yùn)用,培養(yǎng)同學(xué)們的空間想象能力和基本的運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且z1=2-i,則復(fù)數(shù)$\frac{{z}_{1}}{|{z}_{1}{|}^{2}+{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=$\sqrt{|x|-1}$的單調(diào)遞減區(qū)間是(-∞.-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)α為銳角,若cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則sin(α-$\frac{π}{12}$)=(  )
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{5}$D.-$\frac{\sqrt{2}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a>0;q:實(shí)數(shù)x滿足$\frac{1}{x-2}$≥1,¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若線性回歸方程為$\stackrel{∧}{y}$=4.4$\hat x$+838,則當(dāng)x=10時(shí),y的估計(jì)值為882.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=$\frac{sinx}{x}$的圖象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(2x+φ)(A≠0)滿足f(x+a)=f(a-x),則f(a+$\frac{π}{4}$)=( 。
A.AB.-AC.0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知 p:A={ x||x-2|≤4},q:B={ x|( x-1-m )( x-1+m )≤0}( m>0),若¬p是¬q的必要不充分條件,求實(shí)數(shù) m 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案