分析 (1)對(duì)函數(shù)求導(dǎo),利用導(dǎo)函數(shù)與函數(shù)單調(diào)性的關(guān)系即可求解.
(2)利用條件x0是函數(shù)f(x)的極值點(diǎn),確定a的數(shù)值,然后證明:$g({x_0})>\frac{1}{2}-ln2$.
解答 解:函數(shù)的定義域?yàn)椋?,+∞),
(1)$f'(x)=4x+\frac{a}{x}=\frac{{4{x^2}+a}}{x}$,
當(dāng)a≥0,f'(x)>0恒成立,
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a<0時(shí),令f'(x)=0,得$x=\frac{{\sqrt{-a}}}{2}$或$x=-\frac{{\sqrt{-a}}}{2}$(不合題意,舍去),
則當(dāng)$x∈({0,\frac{{\sqrt{-a}}}{2}})$時(shí),f'(x)<0,函數(shù)f(x)在$({0,\frac{{\sqrt{-a}}}{2}})$上單調(diào)遞減,
當(dāng)$x∈({\frac{{\sqrt{-a}}}{2},+∞})$時(shí),f'(x)>0,函數(shù)f(x)在$({\frac{{\sqrt{-a}}}{2},+∞})$上單調(diào)遞增.
(2)∵g(x)=2x2-4x+2+alnx,
∴$g'(x)=4x-4+\frac{a}{x}=\frac{{4{x^2}-4x+a}}{x}$,
∵函數(shù)g(x)存在兩個(gè)極值點(diǎn),設(shè)兩個(gè)極值點(diǎn)為x1,x0,
∴x1,x0是方程4x2-4x+a=0的兩根,
∴△=16-16a>0,0<a<1,且x1+x0=1,
∵函數(shù)y=4x2-4x+a開(kāi)口向上,與x軸交于兩點(diǎn),x0是函數(shù)g(x)的極小值點(diǎn),
∴x1<x0,從而$\frac{1}{2}<{x_0}<1$,
由$4x_0^2-4{x_0}+a=0$,得$a=-4x_0^2+4$,x0∈(0,1),
$g({x_0})=2{({{x_0}-1})^2}+({4{x_0}-4x_0^2})ln{x_0}$,
設(shè)$h(t)=2{({t-1})^2}+({4t-4{t^2}})lnt({\frac{1}{2}<t<1})$,
∵h(yuǎn)'(t)=4(1-2t)lnt>0,
∴h(t)在$({\frac{1}{2},1})$上遞增,
∴$h(t)>h({\frac{1}{2}})=\frac{1}{2}-ln2$,
∴$g({x_0})>\frac{1}{2}-ln2$.
點(diǎn)評(píng) 本題的考點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及函數(shù)的極值問(wèn)題.對(duì)于參數(shù)問(wèn)題要注意進(jìn)行分類(lèi)討論,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 3 | 1 | 5 | 6 | 2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | $\frac{16}{3}$ | C. | 5 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{2}{e}+\frac{e}{2},+∞})$ | B. | [e,+∞) | C. | [2,+∞) | D. | [2,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | $\sqrt{5}$ | C. | 5 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,2] | B. | (0,3] | C. | [0,2] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com