4.已知l,m為直線,α為平面,l∥α,m?α,則l與m之間的關(guān)系是(  )
A.平行B.垂直C.異面D.平行或異面

分析 若一條直線與一個(gè)平面平行,則這條直線與平面的中任一直線平行或異面.

解答 解:∵l,m為直線,α為平面,l∥α,m?α,
∴由線面平行的性質(zhì)定理得l與m平行或異面.
故選:D.

點(diǎn)評(píng) 本題考查兩直線的位置關(guān)系的判斷,解題時(shí)要認(rèn)真審題,注意線面平行的性質(zhì)定理的合理運(yùn)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ex-ax,a∈R.
(1)若a=2,求曲線f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)a>1時(shí),求函數(shù)f(x)在[0,a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì),會(huì)標(biāo)是以我國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計(jì)的.弦圖是由4個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么cos2θ的值為(  )
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.$-\frac{12}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某班學(xué)生考試成績(jī)中,數(shù)學(xué)不及格的占15%,語(yǔ)文不及格的占5%,兩門都不及格的占3%.已知一學(xué)生數(shù)學(xué)不及格,則他語(yǔ)文也不及格的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
需要4030
不需要160270
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)?
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
${K^2}=\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a6+a10=4,則S15=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知:$\overrightarrow{a}$=(5$\sqrt{3}$cos x,cos x),$\overrightarrow$=(sin x,2cos x),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow$|2+$\frac{3}{2}$.
(1)求函數(shù)f (x)的最小正周期和對(duì)稱中心;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域;
(3)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移$\frac{π}{3}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求g($\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=ax2-blnx在點(diǎn)(1,f(1))處的切線為y=1,則a+b的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^n}({n∈{N^*}})$,用數(shù)學(xué)歸納法證明f(n)>$\frac{n}{2}$時(shí),由n=k到n=k+1,左邊增加了(  )項(xiàng).
A.1B.kC.2kD.2k-1

查看答案和解析>>

同步練習(xí)冊(cè)答案