分析 (1)根據(jù)題意,由a2-b2+c2-ac=0可得a2+c2-b2=ac,將其代入余弦定理cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$中,可得cosB=$\frac{1}{2}$,進(jìn)而可得B的值,即可得答案.
(2)先由正弦定理用角A、B表示出a、b,實(shí)現(xiàn)了邊向角的轉(zhuǎn)變,進(jìn)而轉(zhuǎn)化成三角函數(shù)求值域問題求解.
解答 (本題滿分為14分)
解:(1)根據(jù)題意,a2-b2+c2-ac=0,則a2+c2-b2=ac,
則cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
則∠B=60°;…(6分)
(2)∵b=1,∠B=60°,可得:A+C=120°,
∴a=$\frac{bsinA}{sinB}$=$\frac{2\sqrt{3}sinA}{3}$,
同理c=$\frac{csinC}{sinB}$=$\frac{2\sqrt{3}sinC}{3}$,
∴△ABC周長(zhǎng)=a+b+c
=1+$\frac{2\sqrt{3}sinA}{3}$+$\frac{2\sqrt{3}sinC}{3}$
=1+$\frac{2\sqrt{3}}{3}$(sinA+sinC)
=1+$\frac{2\sqrt{3}}{3}$[sinA+sin(120°-A)]
=1+2sin(A+30°),…(12分)
∵0<A<120°,
∴30°<A+30°<150°,sin(A+30°)∈($\frac{1}{2}$,1],
∴△ABC周長(zhǎng)的取值范圍為(2,3].…(14分)
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理的運(yùn)用,關(guān)鍵是牢記余弦定理的公式,綜合考查了三角函數(shù)以及解三角形的有關(guān)知識(shí),考查了學(xué)生的分析能力和運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 101 | B. | 102 | C. | 103 | D. | 104 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-2]∪(1,+∞) | B. | (-3,-2]∪(1,2) | C. | [-3,-2)∪(1,2] | D. | (-∞,-3]∪(1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com