11.P是棱長(zhǎng)為2的正四面體內(nèi)任意一點(diǎn),則它到該正四面體各個(gè)面的距離之和等于$\frac{2\sqrt{6}}{3}$.

分析 先求出正四面體的體積,利用正四面體的體積相等,求出它到四個(gè)面的距離.

解答 解:因?yàn)檎拿骟w的體積等于四個(gè)三棱錐的體積和,
設(shè)它到四個(gè)面的距離分別為a,b,c,d,
由于棱長(zhǎng)為1的正四面體,故四個(gè)面的面積都是 $\frac{1}{2}$×2×2×sin60°=$\sqrt{3}$.
又頂點(diǎn)到底面的投影在底面的中心,此點(diǎn)到底面三個(gè)頂點(diǎn)的距離都是高的
,又高為2×sin60°=$\sqrt{3}$,
故底面中心到底面頂點(diǎn)的距離都是:$\frac{2\sqrt{3}}{3}$.
由此知頂點(diǎn)到底面的距離是 $\sqrt{{2}^{2}-({\frac{2\sqrt{3}}{3})}^{2}}$=$\frac{2\sqrt{6}}{3}$.
此正四面體的體積是 $\frac{1}{3}$×$\sqrt{3}$×$\frac{2\sqrt{6}}{3}$=$\frac{1}{3}$×$\sqrt{3}$×(a+b+c+d).
所以:a+b+c+d=$\frac{2\sqrt{6}}{3}$.
故答案為:$\frac{2\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題是中檔題,考查正四面體的體積的計(jì)算,轉(zhuǎn)化思想的應(yīng)用,考查空間想象能力,計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2}{1-i}$-2i3(i為虛數(shù)單位)表示的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.銳角三角形ABC的三內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別是a,b,c,且a,b,c滿足a2-b2+c2-ac=0
(1)求內(nèi)角B的大小;
(2)若b=1,求三角形ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.等差數(shù)列{an}的首項(xiàng)為a1,公差為d,前n項(xiàng)和為Sn,求證:數(shù)列{$\frac{{S}_{n}}{n}$}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)正三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)相等,體積為$16\sqrt{3}c{m^3}$,它的三視圖中的俯視圖如圖所示,側(cè)視圖是一個(gè)矩形,則側(cè)視圖的面積是( 。
A.8B.$8\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下面幾種推理過(guò)程是演繹推理的是( 。
A.某校高三有8個(gè)班,1班有51人,2班有53人,由此推斷各班人數(shù)都超過(guò)50人
B.由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)
C.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3),由此歸納出{an}的通項(xiàng)公式
D.三角函數(shù)都是周期函數(shù),tanα是三角函數(shù),因此tanα是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對(duì)任意的x1,x2∈[a,b],式子$f({\frac{{{x_1}+{x_2}}}{2}})$≤$\frac{{f({x_1})+f({x_2})}}{2}$恒成立.記S1=$\int_{\;\;a}^{\;\;b}$f(x)dx,S2=$\frac{f(a)+f(b)}{2}$•(b-a),S3=f(b)(b-a),則S1,S2,S3的大小關(guān)系為s3<s1≤s2.(按由小到大的順序)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.計(jì)算不定積分${∫}_{\;}^{\;}$$\frac{{x}^{3}+3{x}^{2}sinx+2x-1}{{x}^{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,D為BC的中點(diǎn),tan∠BAD=$\frac{1}{tan∠C}$,E為邊AC上的一點(diǎn),且AE=$\frac{1}{2}$EC,BE=2,則△ABC面積的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案