設等差數(shù)列
的前
項和為
,若
,
,則
_____.
試題分析:由等差數(shù)列前N項和的性質得
成等差數(shù)列,∴
,∴
,∴
45
點評:設
是等差數(shù)列
的前
n項和,則
也為等差數(shù)列.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
若數(shù)列
、的通項公式分別是
,,且
,對任意
恒成立,則常數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知數(shù)列
是等比數(shù)列,
,且
是
的等差中項.
(Ⅰ) 求數(shù)列
的通項公式
;
(Ⅱ)若
,求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列
為等差數(shù)列且
,則
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列
中,a
3+a
11="8," 數(shù)列
是等比數(shù)列,且b
7=a
7,則b
6b
8的值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
,
是
的前
項和,且
.
(1)求
的通項公式;
(2)設
,
是
的前n項和,是否存在正數(shù)
,對任意正整數(shù)
,不等式
恒成立?若存在,求
的取值范圍;若不存在,說明理由.
(3)判斷方程
是否有解,說明理由;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
為遞減的等差數(shù)列,
是數(shù)列
的前
項和,且
.
⑴ 求數(shù)列
的前
項和
⑵ 令
,求數(shù)列
的前
項和
查看答案和解析>>