11.已知10a=2,10b=3,則log312=$\frac{2a+b}$.

分析 由已知得a=lg2,b=lg3,使用換底公式將log312化成以10為底的對(duì)數(shù)進(jìn)行化簡(jiǎn).

解答 解:∵10a=2,10b=3,∴a=lg2,b=lg3.
∴l(xiāng)og312=$\frac{lg12}{lg3}$=$\frac{lg3+2lg2}{lg3}$=$\frac{2a+b}$.
故答案為:$\frac{2a+b}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),換底公式,屬于基礎(chǔ)題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知直線ln:nx+2ny=4n+1(n=1,2,…)與x軸、y軸的交點(diǎn)分別為An、Bn,O為坐標(biāo)原點(diǎn),設(shè)△OAnBn的面積為Sn(n=1,2,…),則$\lim_{n→∞}{S_n}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overline{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$|$\overrightarrow{a}$-$\overrightarrow$|.求:
(1)$\overrightarrow{a}$•(2$\overrightarrow{a}$-4$\overrightarrow$);
(2)|3$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.△ABC的三內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a,b,c,若S△ABC=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,則角A的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知U={x|x是三角形},A={x|x是等邊三角形},求∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若直線l的傾斜角的取值范圍為[$\frac{π}{3}$,$\frac{3π}{4}$],則直線l的斜率的取值范圍為(-∞,-1]∪[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知直線x-my-1-m=0與圓x2+y2=1相切,則實(shí)數(shù)m的值為( 。
A.l或0B.0C.-1或0D.l或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知過(guò)球面上有三點(diǎn)A,B,C的截面到球心的距離是球半徑的一半,且AB=BC=CA=2,則此球的半徑是( 。
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問(wèn)是否有的99%把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異:
(2)若對(duì)年齡在[5,15)的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,恰好兩人都支持“生育二胎放開”的概率是多少?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
參考數(shù)據(jù):
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案