已知集合A={a1,a2,a3…an},記和ai+aj(1≤i≤j≤n)中所有不同值的個數(shù)為M(A),如當(dāng)A={1,2,3,4}時,由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.對于集合B={b1,2,b3…bn},若實數(shù)b1,b2…bn成等差數(shù)列,則M(B)等于


  1. A.
    2n-3
  2. B.
    2n-2
  3. C.
    2n-1
  4. D.
    2n
A
分析:把 bi+bj (1≤i<j≤m,i,j∈N)的值列成圖表,嚴(yán)格利用題目給出的新定義,采用列舉法來進(jìn)行求解即可.
解答:對于集合B={b1,b2,b3,…,bn},若實數(shù)b1,b2,b3,…,bn成等差數(shù)列,
則 bi+bj (1≤i<j≤m,i,j∈N)的值列成如下各列所示圖表:
b1+b2,b2+b3,b3+b4,…,bn-1+bn,
b1+b2,b2+b4,b3+b5,…,bn-2+bn,
…,…,…,
b1+bn-2,b2+bn-1,b3+bn,
b1+bn-1,b2+bn,
b1+bn,
∵數(shù)列{bn}是等差數(shù)列,
∴b1+b4=b2+b3,b1+b5=b2+b4,…,b1+bn=b2+bn-1
∴第二列中只有 b2+bn 的值和第一列不重復(fù),即第二列剩余一個不重復(fù)的值,
同理,以后每列剩余一個與前面不重復(fù)的值,
∵第一列共有n-1個不同的值,后面共有n-1列,
∴所有不同的值有:n-1+n-2=2n-3,故M(B)=2n-3,
故選A.
點評:本題考查進(jìn)行簡單的合情推理,屬于新定義的創(chuàng)新題,主要考查等差數(shù)列的定義和性質(zhì),題目篇幅長,難于理解是解決這一問題的障礙,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對于n=9,試給出一個滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對于n=11,試給出一個滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)若集合A={2,4,8,16},則l(A)=
 
;
(Ⅱ)當(dāng)n=108時,l(A)的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案