12.已知$f(x)=lg\frac{x}{2-x}$,若f(a)+f(b)=0,則$\frac{4}{a}+\frac{1}$的最小值是$\frac{9}{2}$.

分析 $f(x)=lg\frac{x}{2-x}$,f(a)+f(b)=0,可得$lg\frac{a}{2-a}$+$lg\frac{2-b}$=0,化為a+b=2.(a,b∈(0,2)),可得$\frac{4}{a}+\frac{1}$=$\frac{1}{2}(a+b)$$(\frac{4}{a}+\frac{1})$=$\frac{1}{2}(5+\frac{4b}{a}+\frac{a})$,再利用基本不等式的性質(zhì)即可得出.

解答 解:$f(x)=lg\frac{x}{2-x}$,f(a)+f(b)=0,∴$lg\frac{a}{2-a}$+$lg\frac{2-b}$=0,∴$\frac{ab}{(2-a)(2-b)}$=1,化為a+b=2,(a,b∈(0,2))
則$\frac{4}{a}+\frac{1}$=$\frac{1}{2}(a+b)$$(\frac{4}{a}+\frac{1})$=$\frac{1}{2}(5+\frac{4b}{a}+\frac{a})$≥$\frac{1}{2}(5+2\sqrt{\frac{4b}{a}×\frac{a}})$=$\frac{9}{2}$.當(dāng)且僅當(dāng)a=2b=$\frac{4}{3}$時(shí)取等號.
故答案為:$\frac{9}{2}$.

點(diǎn)評 本題考查了函數(shù)的性質(zhì)、基本不等式的性質(zhì)、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,圓錐的軸截面為三角形SAB,O為底面圓圓心,C為底面圓周上一點(diǎn),D為BC的中點(diǎn).
(I)求證:平面SBC⊥平面SOD;
(II)如果∠AOC=∠SDO=60°,BC=2$\sqrt{3}$,求該圓錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,a,b,c分別為角A,B,C的對邊,若函數(shù)$f(x)=\frac{1}{3}{x^3}+b{x^2}+({a^2}+{c^2}-ac)x+1$有極值點(diǎn),則∠B的范圍是($\frac{π}{3}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知命題p:?x>0,總有(x+1)ex>1.則¬p為?x0>0,使得$({x_0}+1){e^{x_0}}≤1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個(gè)結(jié)論中錯(cuò)誤的個(gè)數(shù)是( 。
①若a=30.4,b=log0.40.5,c=log30.4,則a>b>c
②“命題p和命題q都是假命題”是“命題p∧q是假命題”的充分不必要條件
③若平面α內(nèi)存在一條直線a垂直于平面β內(nèi)無數(shù)條直線,則平面α與平面β垂直
④已知數(shù)據(jù)x1,x2,…,xn的方差為3,若數(shù)據(jù)ax1+1,ax2+1,…axn+1,(a>0,a∈R)的方差為12,則a的值為2.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}和{bn}滿足${a_1}{a_2}{a_3}…{a_n}={2^{{b_{n}}}}$(n∈N*).若{an}是各項(xiàng)為正數(shù)的等比數(shù)列,且a1=4,b3=b2+6.
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=$\frac{1}{{\sqrt{a_n}}}-\frac{1}{b_n}$,記數(shù)列{cn}的前n項(xiàng)和為Sn
①求Sn;
②求正整數(shù)k.使得對任意n∈N*,均有Sk≥Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲線C2的極坐標(biāo)方程為:ρ2(1+sin2θ)=8,
(1)寫出C1和C2的普通方程;
(2)若C1與C2交于兩點(diǎn)A,B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的定義域、值域及單調(diào)區(qū)間.
(1)f(x)=3${\;}^{\sqrt{{x}^{2}-5x+4}}$;
(2)f(x)=4x-2x+1-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各組對象不能組成集合的是( 。
A.里約熱內(nèi)盧奧運(yùn)會的比賽項(xiàng)目B.中國文學(xué)四大名著
C.我國的直轄市D.抗日戰(zhàn)爭中著名的民族英雄

查看答案和解析>>

同步練習(xí)冊答案