4.已知在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲線C2的極坐標方程為:ρ2(1+sin2θ)=8,
(1)寫出C1和C2的普通方程;
(2)若C1與C2交于兩點A,B,求|AB|的值.

分析 (1)將曲線C2的極坐標方程ρ2(1+sin2θ)=8,利用互化公式可得直角坐標方程.將曲線C1的方程$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,消去t化為普通方程.
(2)若C1與C2交于兩點A,B,可設A(x1,y1)B(x2,y2),聯(lián)立方程組消去y,可得3x2-12x+10=0,利用弦長公式即可得出.

解答 解:(1)將曲線C2的極坐標方程ρ2(1+sin2θ)=8,化為直角坐標方程x2+2y2=8;
將曲線C1的方程$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,消去t化為普通方程:y=x-3.
(2)若C1與C2交于兩點A,B,可設A(x1,y1)B(x2,y2),
聯(lián)立方程組$\left\{\begin{array}{l}y=x-3\\{x^2}+2{y^2}=8\end{array}\right.$,消去y,可得x2+2(x-3)2=8,
整理得3x2-12x+10=0,∴$\left\{\begin{array}{l}{x_1}+{x_2}=4\\{x_1}{x_2}=\frac{10}{3}\end{array}\right.$,
則$|{AB}|=\sqrt{({1+{1^2}}){{({{x_1}-{x_2}})}^2}}=\sqrt{2}\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}=\frac{{4\sqrt{3}}}{3}$.

點評 本題考查了直線的參數(shù)方程及其應用、極坐標方程化為直角坐標方程、弦長公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.某一算法程序框圖如圖所示,則輸出的S的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在△ABC中,∠B=$\frac{π}{3}$,D為邊BC上的點,E為AD上的點,且AE=8,AC=4$\sqrt{10}$,∠CED=$\frac{π}{4}$.
(1)求CE的長
(2)若CD=5,求cos∠DAB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知$f(x)=lg\frac{x}{2-x}$,若f(a)+f(b)=0,則$\frac{4}{a}+\frac{1}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},則集合A∩B=(  )
A.{1,2}B.{x|0≤x≤1}C.{(1,2)}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ x+y≤0\\ x-y-3≤0\end{array}\right.$,設x2+y2+4x的最大值點為A,則經(jīng)過點A和B(-2,-3)的直線方程為( 。
A.3x-5y-9=0B.x+y-3=0C.x-y-3=0D.5x-3y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知直線x-2y+2k=0與兩坐標軸所圍成的三角形的面積為1,則實數(shù)k值是±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知角α終邊上一點P(-2,3),則$\frac{cos(\frac{π}{2}+α)sin(π+α)}{cos(π-α)sin(3π-α)}$的值為(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設 α為銳角,$\overrightarrow a=(sinα,1)$,$\overrightarrow b=(1,2)$,若$\overrightarrow a$與$\overrightarrow b$共線,則角α=( 。
A.15°B.30°C.45°D.60°

查看答案和解析>>

同步練習冊答案