2.如圖,圓錐的軸截面為三角形SAB,O為底面圓圓心,C為底面圓周上一點,D為BC的中點.
(I)求證:平面SBC⊥平面SOD;
(II)如果∠AOC=∠SDO=60°,BC=2$\sqrt{3}$,求該圓錐的側(cè)面積.

分析 (Ⅰ)推導(dǎo)出SO⊥平面OBC,從而SO⊥BC,再求出OD⊥BC,從而BC⊥平面SOD,由此能證明平面SBC⊥平面SOD.
(Ⅱ)求出∠COD=60°,OD=1,OC=2,SO=$\sqrt{3}$,SA=$\sqrt{7}$,由此能求出該圓錐的側(cè)面積.

解答 證明:(Ⅰ)由題意知SO⊥平面OBC,
又BC?平面OBC,∴SO⊥BC,
在△OBC中,OB=OC,CD=BD,
∴OD⊥BC,
又SO∩OD=O,∴BC⊥平面SOD,
又BC?平面SBC,∴平面SBC⊥平面SOD.
解:(Ⅱ)在△OBC中,OB=OC,CD=BD,
∵∠AOC=60°,∴∠COD=60°,
∵CD=$\frac{1}{2}BC=\sqrt{3}$,∴OD=1,OC=2,
在△SOD中,∠SDO=60°,又SO⊥OD,∴SO=$\sqrt{3}$,
在△SAO中,OA=OC=2,∴SA=$\sqrt{7}$,
∴該圓錐的側(cè)面積為${S}_{側(cè)}=π×OA×SA=2\sqrt{7}π$.

點評 本題考查面面垂直的證明,考查圓錐的側(cè)面積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\sqrt{3}sinωx-2{cos^2}\frac{ω}{2}$x+1(ω>0)直線y=2與函數(shù)f(x)圖象相鄰兩交點的距離為π.
(1)求f(x)的解析式;
(2)在△ABC中,角A、B、C所對的邊分別是a、b、c,若點$(\frac{B}{4},0)$是函數(shù)y=f(x)圖象的一個對稱中心,且b=2$\sqrt{3}$,a+c=6,求△ABC面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在(x+a)5的展開式中,x3的系數(shù)為40,則a=±2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)拋物線x2=2y的焦點為F,經(jīng)過點P(1,3)的直線l與拋物線相交于A,B兩點,且點P恰為AB的中點,則$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線方程為y=±$\sqrt{3}$x,且過點$M({\sqrt{2},\sqrt{3}})$,其離心率為e,拋物線C2的頂點為坐標原點,焦點為$({\frac{e}{2},0})$.
(I)求拋物線C2的方程;
(II)O為坐標原點,設(shè)A,B是拋物線上分別位于x軸兩側(cè)的兩個動點,且$\overrightarrow{OA}•\overrightarrow{OB}$=12.
(i)求證:直線AB必過定點,并求出該定點P的坐標; (ii)過點P作AB的垂線與拋物線交于C,D兩點,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列說法正確的是(  )
A.經(jīng)過三點有且只有一個平面
B.經(jīng)過兩條直線有且只有一個平面
C.經(jīng)過平面外一點有且只有一個平面與已知平面垂直
D.經(jīng)過平面外一點有且只有一條直線與已知平面垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某一算法程序框圖如圖所示,則輸出的S的值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.過拋物線C:y2=8x的焦點作直線l與C交于A,B兩點,它們到直線x=-3的距離之和等于7,則滿足條件的l( 。
A.恰有一條B.恰有兩條C.有無數(shù)多條D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知$f(x)=lg\frac{x}{2-x}$,若f(a)+f(b)=0,則$\frac{4}{a}+\frac{1}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

同步練習冊答案